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Abstract

This work develops an adaptive concurrent multi-level computational model for multi-scale analysis of
composite structures undergoing damage initiation and growth due to microstructural damage induced by
debonding at the fiber-matrix interface. The model combines macroscopic computations using a continuum
damage model developed in a preceding paper [75] with explicit micromechanical computations of stresses
and strain, including explicit debonding at the fiber-matrix interface. The macroscopic computations are
done by conventional FEM models while the Voronoi cell FEM is used for micromechanical analysis. Three
hierarchical levels of different resolution adaptively evolve in this to improve the accuracy of solutions by
reducing modeling and discretization errors. They levels include: (a) level-0 of pure macroscopic analy-
sis using a continuum damage mechanics (CDM) model; (b) level-1 of asymptotic homogenization based
macroscopic-microscopic RVE modeling to monitor the breakdown of continuum laws and signal the need
for microscopic analyses; and (c) level-2 regions of pure micromechanical modeling with explicit depiction of
the local microstructure. Two numerical examples are solved to demonstrate the effectiveness and accuracy
of the multi-scale model. A double lap bonded composite joint is modeled for demonstrating the model’s

capability in handling large structural problems.

For micromechanical analysis, an eXtended Voronoi cell finite element model (X-VCFEM) is developed
for modeling multiple cohesive crack propagation in brittle materials. The cracks are modeled by a cohesive
zone model and their incremental directions and growth lengths are determined in terms of the cohesive
energy near the crack tip. Extension to VCFEM is achieved through enhancements in stress functions in
the assumed stress hybrid formulation. In addition to polynomial terms, the stress functions include branch
functions in conjunction with level set methods, and multi-resolution wavelet functions in the vicinity of
crack tips. Comparison of X-VCFEM simulation results with results in literature for several fracture me-
chanics problems validates the effectiveness of X-VCFEM. Effect of stereographic features such as size and

distribution of heterogeneities on damage evolution in random microstructures are also discussed. In order



to study the interaction between interface debonding and cohesive matrix cracking, a criterion based on
cohesive models is proposed to assess the crack penetrating into matrix from the interface and is validated

by numerical examples.

Next the eXtended Voronoi cell finite element model(X-VCFEM) has been developed for modeling in-
terfacial debonding with arbitrary matrix cohesive cracking in fiber-reinforced composites. To describe the
onset and growth of damage along the fiber-matrix interface, normal and tangential cohesive zone models
are coupled into VCFEM. It is shown that the initiation and especially propagation of debonding depends
not only on the total cohesive energy, but also on the shape of the traction-displacement curve. The model
is also used to study the influence of various local morphological parameters on damage evolution by inter-
facial debonding. A special function of various geometric parameters is developed to predict the location of

debonding in microstructures with varying morphology.

Finally, a Voronoi cell finite element model is also developed for transient elastodynamic analysis in time
domain is developed. In the present formulation, the inertia field is approximated in terms of stresses so
as to satisfy the equilibrium equation a-priori. The weak forms of kinematics and traction reciprocity are
obtained by minimization of the complementary variational principle. Stress wave is a local disturbance that
propagates through the material, resulting in high stress gradients near the wave front. Therefore, localization
and multi-resolution properties of the wavelet functions are exploited to enhance the computational efficiency
by enriching the stress functions only locally near the wave front. The enrichment is carried out adaptively
by employing posteriori local error estimators that determine the required translation and dilation of the
wavelet functions at each time step. The accuracy and computational efficiency of the proposed method is

demonstrated through comparison with analytical solutions and conventional FEM packages.
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1.9 Technology Transfer to Army Research Laboratory

Technology transfer of some of the codes developed in the PIs research laboratory to ARL platforms has
taken place in consultation with Dr. Peter Chung and Dr. Raju Namburu in the Computational and Infor-
mational Sciences Directorate at ARL. The PI visited has ARL several times in the last few years and Dr.
Namburu and Dr. Chung have also visited the Computational Mechanics Laboratory at OSU several times.
The recent visit by the PI to ARL in 2006 was on July 14, 2006. Significant exchange of ideas and future

plans took place during this visit.

The PI has transferred major codes to the ARL platforms for use by ARL researchers. A special person
with security clearance and authorized to work on US government systems has been recruited from the Ohio
Supercomputer Center to facilitate the technology transfer process. The first code that has been transferred
is the crystal plasticity model. Initial efforts were identified to provide access to the crystal plasticity model
through a user defined material model in LS-DYNA. This required the proper LSTC software, a special ver-
sion of LS-DYNA that allows user subroutines to be compiled in, to be verified on the target ARL systems.
These systems are identified to be the SGI Origin, the IBM P3 system and the Linux cluster. Only the
Origin had the software installed, so requests were entered through the ARL support staff and the software
is now installed on these systems. Next, the user subroutines were moved to the three ARL systems and
compilation and numerical accuracy needed to be verified. Compilation scripts have been customized for
each system and a validation model was run so that numerical results could be compared. Compilation
was verified on all three machines and numerical results have been verified on the Origin and IBM systems.

Documentation is also provided for users to be able to reference a README file on each.

The second code and model that has been ported to ARL systems is an earlier version of the CDM
model. The Fortran 90 code has been ported to JVN Linux cluster at ARL. We have created Make files
to build the model and have created batch scripts documenting example usage. The User Manual for this

code documents important control variables, input file structure and provides an example case to document



analysis workflow.



Chapter 2

Introduction

Analysis of composite materials with microstructural heterogeneities is conventionally done with macroscopic
properties obtained by homogenizing response functions in the representative volume element (RVE) from
microscopic analyses at smaller length scales. While these “bottom-up” homogenization models are efficient
and can reasonably predict macroscopic or averaged behavior, such as stiffness or strength, they have limited
predictive capabilities with problems involving localization, failure or instability. Assumptions of macroscopic
uniformity and RVE periodicity, the two basic requirements of homogenization, break down under these
circumstances. The uniformity assumption ceases to hold in critical regions of high local solution gradients,
such as near free edges, interfaces, material discontinuities or evolving damage. RVE periodicity, on the other
hand, is unrealistic for non-uniform microstructures, e.g. in the presence of clustering of heterogeneities or
microscopic damage. Even with a uniform phase distribution in the microstructure, the evolution of localized
stresses, strains or damage path can violate the periodicity conditions. Problems like this have been effectively
tackled by multi-scale modeling methods e.g. in [72, 29, 44, 67, 66, 82, 81, 74, 73, 94, 108, 92]. Multi-scale
analyses methods can be broadly classified into two classes. The first is known as ”hierarchical models”
[29, 44, 94, 92] in which information is passed from lower to higher scales, usually in the form of material
properties. The hierarchical homogenization models assume periodic representative volume elements (RVE)
in the microstructure and uniformity of macroscopic field variables. The second class, known as “concurrent

methods” [81, 67, 66, 82, 74, 73, 108], implement sub-structuring and simultaneously solve different models



at regions with different resolutions or scales.

Two-way coupling of scales enabled in the concurrent methods is suitable for problems involving local-
ization, damage and failure. Macroscopic analysis, using bottom-up homogenization in regions of relatively
benign deformation, enhances the efficiency of the computational analysis. As a matter of fact, it would be
impossible to analyze large structural regions without the advantage of a continuum model based macro-
scopic analysis. On the other hand, the top-down localization process cascading down to the microstructure
in critical regions of localized damage or instability for pure microscopic analysis, is necessary for accu-
rately predicting the damage path. These microscopic computations, depicting the real microstructure are
often complex and computationally prohibitive. Hence, a concurrent setting makes such analyses feasible,
provided the ”zoom-in” regions are kept to a minimum. The adaptive multi-level models, promoted in
[67, 66, 82, 74, 73, 108], are attempts to achieve this objective, with the adaptivity motivated from physi-
cal and mathematical perspectives. However, there is a paucity of such studies in the literature involving
material nonlinearity and evolving microstructural damage. In their previous studies, Ghosh and coworkers
have proposed adaptive multi-level analysis using the microstructural Voronoi cell FEM model for modeling
elastic-plastic composites with particle cracking and porosities in [81], and for elastic composites with free
edges and stress singularities in [74, 73].

In this work, we have derived and computationally modeled an anisotropic continuum damage mechanics
(CDM) model for unidirectional fiber-reinforced composites undergoing interfacial debonding from by using
homogenization theory. The CDM model homogenizes the damage incurred through initiation and growth
of interfacial debonding in a microstructural RVE with nonuniform distribution of fibers. Additionally,
arbitrary loading conditions are also effectively handled by this model. The CDM model is then used in an
adaptive concurrent multi-level computational model to analyze multi-scale evolution of damage. Damage
by fiber-matrix interface debonding, is explicitly modeled over extended microstructural regions at critical
locations [35, 53]. The adaptive model addresses issues of efficiency and accuracy through considerations of
physically-based modeling errors.

The adaptive multi-level model consists of three levels of hierarchy viz. level-0, level-1 and level-2), which

evolve in sequence. The continuum damage model developed in [75] is used for level-0 computations. The
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level-1 domain is used as a ‘swing region’ to establish criteria for switching from macroscopic to microscopic
calculations. Physical criteria involving variables at the macroscopic and microstructural RVE levels, trigger
switching from pure macroscopic to pure microscopic calculations, i.e. the level — 0 — level — 1 — level — 2.
A transition layer is placed between the level — 1 and microscopic level — 2 domains for smooth transition

from one scale to the next.

An important damage phenomenon in composite microstructures is crack propagation in brittle matrix.
Numerical analysis and simulation of the growth of multiple cracks in materials is a challenging enterprise
due to morphological and constitutive complexities that govern its growth. Even a very high density mesh
cannot overcome pathological mesh dependence near the crack tips and avoid biasing the direction of crack
propagation. The difficulties aggravate in the presence of multiple cracks, due to their interaction with each
other. Various methods have been proposed for improving the effectiveness of computational methods in
modeling cracks. While most of these analyses are limited to stationary cracks, it is only recently that effec-
tive methods of analysis of crack propagation are being proposed. With increasing power of computational
modeling and hardware, the cohesive zone models [63, 64, 65, 97, 30, 33, 39, 68] have emerged as important
tools for modeling crack propagation in homogeneous and heterogeneous materials. In these models, inter-
faces of similar and dissimilar materials are treated as zero thickness non-linear springs. Interfacial traction
is specified as nonlinear functions of tangential and normal separations across the interface to manifest crack
evolution. These models have been used to simulate crack growth between elements in [13, 103, 39], by lacing
the interface between contiguous elements with cohesive springs. The use of a highly refined computational
mesh, especially near the crack tip is still a requirement, even though the effect is mitigated due to the
finite crack tip stress with this model. Alternatively, intra-element enrichment approaches, based on the
incorporation of embedded discontinuities in displacement or strain fields have been proposed ([48]), which
eliminates mesh dependent prediction of the evolving crack path, and hence the need for remeshing. The
extended FEM or X-FEM [8, 7, 9, 10, 24, 59, 60] is a powerful recent addition to this family of intra-element
enrichment. Cohesive crack propagation has been modeled in this work by using the partition of unity

concept to incorporate local enrichment functions that allows the preservation of the general displacement
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based FEM formalism.

Stress-based finite element methods have had considerable success when stress fields are of interest in the
analysis [96, 95]. Within this general formalism, the Voronoi cell finite element method (VCFEM) has been
developed in [35, 61, 80, 36, 79, 78, 53] for micromechanical analysis of arbitrary heterogeneous microstruc-
tures. The method can effectively overcome requirements of large degrees of freedom in conventional finite
element models. Morphological arbitrariness in dispersions, shapes and sizes of heterogeneities, as seen in
real micrographs are readily modeled by this method. The VCFE model naturally evolves by tessellation
of the microstructure into a network of multi-sided Voronoi polygons. Each Voronoi cell with embedded
heterogeneities (particle, fiber, void, crack etc.) represents the region of contiguity for the heterogeneity,
and is treated as an element in VCFEM. VCFEM elements are considerably larger than conventional FEM
elements and incorporate a special assumed stress hybrid FEM formulation. Incorporation of known func-
tional forms from analytical micromechanics substantially enhances its convergence. A high level of accuracy
with significantly reduced degrees of freedom has been achieved with VCFEM. Computational efficiency is
therefore substantially enhanced compared to conventional displacement-based FE models. Successful ap-
plications of 2D-small deformation VCFEM have been made in thermo-elastic-plastic problems of composite
and porous materials [61, 80]. An adaptive VCFEM has been developed in [80], where optimal improvement

is achieved by h-p adaptation of the displacement field and p-enrichment of the stress field.

The cohesive crack propagation model has been incorporated in VCFEM in [35, 53] to model interface
debonding in fiber reinforced composites. However, in these models, the debonding or crack evolution path
is along the interface and hence the cohesive zone regions are known a-priori. In the event that the crack
branches off into the matrix, the path is no longer pre-assessed and needs to be determined at each load
increment, consistent with the local state of stresses, strains and morphology. This task is considerably more

challenging since a slight deviation can lead to completely wrong prediction.

The motivation of this work is derived from the need to create a robust finite element method, eXtended
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Voronoi cell finite element model (X-VCFEM), for modeling interface debonding with arbitrary crack prop-
agation in heterogeneous materials. This is an essential step, prior to simulating the entire microstructural
failure problem. X-VCFEM incorporates: (a) stress discontinuities across the cohesive crack through branch
functions in conjunction with level set methods, (b) crack tip stress concentration through the introduction
of multi-resolution wavelet functions [38, 47, 71] in the vicinity of the crack tip, and (c) incremental crack
propagation using a cohesive energy based criterion for estimating the direction and length of the incremental

crack advance.

Finally, a Voronoi cell finite element model is developed for transient elastodynamic analysis in time
domain is developed. In the present formulation, the inertia field is approximated in terms of stresses so
as to satisfy the equilibrium equation a-priori. The weak forms of kinematics and traction reciprocity are
obtained by minimization of the complementary variational principle. Stress wave is a local disturbance
that propagates through the material, resulting in high stress gradients near the wave front. Therefore,
localization and multi-resolution properties of the wavelet functions are exploited to enhance the computa-
tional efficiency by enriching the stress functions only locally near the wave front. The enrichment is carried
out adaptively by employing posteriori local error estimators that determine the required translation and
dilation of the wavelet functions at each time step. At the outset, a stable, accurate and computationally
efficient adaptive computational framework in 1D is developed for micro-mechanical response of composites
under impact loading. The accuracy and computational efficiency of the proposed method is demonstrated

through comparison with analytical solutions and conventional FEM packages.

2.1 Organization of this Report

The report is divided into five subsequent chapters. In chapter 3, variational formulation and various
aspects of the computational scheme for stress wave propagation in composites are presented. Extensions of
the VCFEM (X-VCFEM) for cohesive crack propagation are developed in Chapter 4. Numerical validation

of X-VCFEM for matrix cracking is also presented. Based on the preparation of previous two chapters,
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the X-VCFEM for modeling interface debonding with matrix cohesive cracking are developed in chapter 5.

Finally, an account of multi-scale modeling is presented with critical examples.
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Chapter 3

Multi-resolution Wavelet Enriched

Hybrid Finite Element Method for
One Dimensional Elastic Wave

Propagation in Heterogeneous Solids

3.1 Introduction

Heterogeneous materials are being used increasingly in impact related applications because of their high
strength to weight ratio and improved dynamic properties [32, 58]. As a consequence, analysis of wave
propagation through heterogeneous media is being pursued consistently by researchers. However, most of
the methods available in the literature aim at obtaining macroscopic response using effective properties of
the composites. The major challenge in obtaining actual micro-scopic response of composites under dynamic
loading is the computational size of the problem and the complex nature of the wave propagation phenomena.

Stress waves experience multiple reflections, transmissions and interference in the presence of heterogeneities
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in the microstructure and produce dynamic stress concentrations that are significantly greater than that in
global average response [69]. This initiates and propagates the damage, leading to failure of the material.

Recently, attempts have been made to account for the micro-structural effects in the macro response. Wang
and Sun [101] developed a technique that includes the effect of micro-inertia in the continuum model of the
heterogeneous materials. Using these macro-equations, harmonic and transient response of one-dimensional
layered medium was obtained which was in close agreement with the analytical results for a range of wave-
lengths. Fish et al [46, 45] developed a dispersive model for wave propagation using higher order homoge-
nization theory with multiple spatial and temporal scales. A goal-oriented adaptive modeling technique that
solves the micro-mechanical problem using actual material properties was developed in frequency domain
by Romkes and Oden [77]. The method used local error estimators to identify the regions where actual

properties are to be used and the critical frequencies for which the solution is to be improved.

In the last decade, Voronoi Cell Finite Element Method (VCFEM) has emerged as a powerful technique
for micro-mechanical modeling of arbitrary heterogeneous materials. VCFEM has been developed for elastic,
elasto-plastic response of heterogeneous materials [61], damage initiation and propagation in ductile as well
as brittle materials [35, 36]. VCFEM has been shown to be significantly more efficient than the conventional
displacement based methods for 2D static problems. In this work, a hybrid formulation based on same
principle is presented for one dimensional elastic wave propagation in heterogeneous materials. There have
been a few hybrid/mixed formulations in the literature for elastodynamic analysis [3, 89, 31]. Inclusion of
adaptive techniques in such formulations could reduce the size of the problem substantially. The formulation
proposed in this work utilizes the multi-resolution properties of the wavelets for adaptive enrichment of stress

function so that least number of stress parameters are required.

The proposed formulation makes two independent approximations: stress field and the boundary dis-
placement field. The internal displacement field is approximated in terms of stresses so as to satisfy the
equilibrium equation in strong sense. The kinematic equation in the element, traction reciprocity and the

compatibility of the internal displacement field are satisfied in weak sense as Euler-Lagrange equations.
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The chapter is organized as follows: The hybrid stress formulation for one dimensional wave propagation
is introduced first. The weak form is derived by taking variations of the Hamiltonian expressed in terms
of complimentary energy. The stress function is constructed adaptively using multi-resolution wavelets and
posteriori error indicator. The developed adaptive algorithm is implemented for simulating wave propagation

through layered media.

3.2 Assumed Stress Hybrid Formulation

A typical 2D Voronoi cell element is multi-phase domain consisting of inclusion/cavity surrounded by matrix
phase [61]. However, the two-noded 1D element presented here consists of a single phase such that each layer
of heterogeneous layered media becomes one element 2, without need of any further refinement. The element
boundary 9, with unit outward normal n¢ is formed by two nodes and may consist of prescribed traction
T'4e, prescribed displacement T’y and inter-element boundary I',,.. For the hybrid element formulation, in
the absence of body forces, the micro mechanics elastodynamic initial boundary value problem is described

as:

Find (o,u,ur) € T xV x Vr satisfying

. 0B
V.-o=pii and 6—U=6€Qe (a)
ur =iionTy, , o-n®=%tonTly (b) (3.1)
oc=0g, u=1uy and u=1ug9 at t=0 (c)

where V = 3%' The variables o, € and B are the equilibrated stress field, the corresponding strain field and
the complimentary energy respectively in the element interior. 7,V and Vr correspond to Hilbert spaces
containing the stress, internal displacement and boundary displacement solutions respectively. wur(z,t) is
kinematically admissible compatible displacement field at the element boundary (nodal displacement), while,
u(z,t), u(z,t) and 4(z,t) represent kinematically admissible internal displacement, velocity and acceleration

fields respectively. Furthermore, p denote the material density and t(¢) is the applied traction (F(t) = t(t)A
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is nodal force where A is cross-sectional area).

The Hamiltonian for one element is written as

H{t) = / () - VE)de (3.2)

t1

where T'(t) is the Kinetic Energy and V(¢) is the Potential Energy. Since the internal displacement field
u is not compatible, the incompatible displacement at the boundary can be made zero by including the
condition u — ur = 0 as a constraint to the Hamiltonian and applying the Lagrange Multiplier technique.
Also, expressing the Potential Energy in terms of Complementary Energy density, and applying divergence

theorem, the Hamiltonian can be rewritten as

to
H(t) :/ {l/pdadﬂ+/BdQ+/VaudQ}dt
tn 2/ Q Q

ta
+/ {— / onuddQ + / turdoQ + / t(u — up)d(')Q} dt (3.3)
t1 89 89 89

where, t = on is boundary traction. In the hybrid formulation, the equilibrium and constitutive equations,
and the displacement compatibility at the inter-element boundary (i.e. nodes) are satisfied a-priori in
strong sense. The kinematic equation, traction boundary condition, traction reciprocity on the inter-element
boundary and compatibility of internal displacement field are obtained as the Euler-Lagrange equations from
the stationarity of the complimentary energy functional (3.3) as follows: Setting the first variation of energy

functional (3.3) equal to zero

to B
0H :/ {—/ pﬁéudﬂ+/ 8—50dQ+/ V((Sa)udﬂ—l—/ Vaéudﬂ}dt (3.4)
t1 Q o 0o Q Q
to
+/ {— donudof +/ tourdoQ + don(u — ur)doQ — anéurdﬁﬁ} dt=0
t1 Q. Q. 00, 0.
where

L) (-}

has been used [102]. Since equation (3.5) is valid for any arbitrary time interval {¢1,%2}, the term inside the
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time integral can be set to zero. Applying divergence theorem to the sixth term in equation (3.5), and noting

that equilibrium and constitutive equations are satisfied a-priori, we arrive at the following weak form:

/ (e — Vu) 6cdQ + / (t — on) durdof) + don (u — ur)do =0 (3.5)
Q 89 o9

which results in weak satisfaction of following equations
e=Vu in Q, (Kinematics)
on=t on O (Traction Boundary)

ont =on~ on 8%,  (Traction Reciprocity)

u=ur on 909, (Compatibility of internal displacements) (3.6)

3.3 Hybrid Element Assumptions and Weak Form

3.3.1 Element Assumptions

In the hybrid stress formulation, stress field in the domain is approximated as

o(z,t) = [P(z, 1) {B(t)} (3.7)

where [P(z,t)] is the matrix containing stress interpolation functions that are functions of time, and {5(¢)}
are the corresponding unknown coefficients. To minimize the computational cost, it is desirable to have
least number of terms in the stress interpolation function. In the present formulation the inertia field in the
domain is approximated in terms of stress approximation. The acceleration field is interpolated in such a

way that the equilibrium equation is satisfied a-priori.

iz, 1) = % [Pz, )] {B(1)} (3.8)
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The velocity and internal displacement fields in the domain are obtained by numerical integration of accel-
eration. According to Newmark method, which is an implicit scheme, velocity and displacement are given

as

WAt = 4t ot + apattht (3.9)

utAt = w4 asal + agit + asattA (3.10)

where a; = (1 — §)At, az = §AL, az = At, ay = (1/2 — a)At? and a5 = aAt?, where a and § are the inte-
gration constants and superscript ()¢ denotes quantities at previous time step. The boundary displacements

are approximated independently as

{ur(z,1)} = [L(=)] {gr(t)} (3.11)

In this one dimensional formulation, the boundary displacements {ur} are same as nodal displacements

{gr} and therefore [L] is an identity matrix.

3.3.2 Weak Form

Substituting equilibrium and constitutive equations in equation (3.5), the weak form of complimentary energy

functional can be written as

/ 5o SodQ + / V(60)udQ + / tourdoQ + / SonurddQ — | ondurddQ =0 (3.12)
Q Q Qe [e19] Qe

The matrix equation of the weak form (3.12) is obtained by substituting the approximations for stress,
internal displacement and boundary displacement fields from equations (3.7), (3.10) and (3.11) into equation

(3.12)

{6BY H]{B} + {68} {Ri} + as{08}" [M]{B}

+ {R}" {Sar} — {8} [Gl{ar} — {8} [G]{oar} =0 (3.13)
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where  [H] = [, [P]"[S][P]d2 M] =1 f,, [VP]"[VP]dQ
= Joq. [P 1" [n][L]do0 Re}=[p, {€}" [n][L)dT

{Rs} =[5 [VP]" {{u}* + as{u}’ + as{}} dO2 (3.14)

3.4 Construction of Wavelet Based Stress Functions

Choice of functions for stress interpolation is the most imperative task in the hybrid stress formulations as
it determines the computational effort required and the level of accuracy that can be achieved. VCFEM
formulations in the past [61, 54] have employed polynomial, reciprocal and some special functions like branch
functions, wavelets etc for stress interpolation to enhance the accuracy and computational efficiency.

Transient wave propagation in elastic solids is essentially traverse of a local disturbance of high stress
gradients through the material. The formulation was tested with stress interpolation based on polynomial
functions. It is observed that polynomials of order as high as 15 are not able to capture the abrupt variations
in the stress field at the moving wave front. Wavelets are the functions that have localization and multi-
resolution properties which, when coupled, facilitate local enrichment of the stress function and therefore are
the most suitable candidates for this purpose. A brief introduction to wavelets is provided in the following
paragraphs, which is followed by details on construction and use of wavelet basis for stress wave propagation

problems.

3.4.1 Principles of Wavelets and Multi-resolution Analysis

Scaling function ¢(x) and wavelet function ¢(x) are the basic building blocks of the multi-resolution analysis.

Scaling function is defined as a recursive function that satisfies the two-scale relation

$(x) = > p(k)p(2z — k) (3.15)

where {p(k)}rcz are the filter coefficients. The scaling function has a compact support if only a finite number

of coefficients p(k) are non-zero. Translation of scaling function ¢ by a factor of 2" and dilation by a factor

21



of k- 27" forms unconditional basis of subspace V;, C L?(R) as
Onk(z) = 2"/29(2"z — F) (3.16)

where n is resolution level. The scaling function ¢ is orthonormal if translations at the same resolution level

satisfy the orthogonality condition

| ons)buatorts = ¥ nkle 2 (3.17)

If the scaling function is orthonormal, the best approximation of a function f(z) at resolution level n is

expressed as the orthogonal projection of f on subspace V,, as:

Anf(z) = Zan,k¢n,k(x), where an k= /OO f(@)bn i (z)dz (3.18)
3 —00

In general, approximation of f(zx), at resolution level n is contained in approximation at any resolution level
higher than n ie. {0} =V_ C---CV_1 CVy CVi C--- CVyp = L?>(R). This means that function
f(z) is approximated better at higher resolutions and some information is lost in transition from higher level
Vn+1 to lower level V,,. This difference is characterized by an orthogonal complementary subspace W,, so
that V41 =V, ® W, V n. A basis that spans the subspace W,, can be obtained in the same manner as for

scaling function, i.e. by translation and dilation of the mother wavelet function

P(x) =Y (k)¢ (2 — k) (3.19)
k

The wavelet basis is orthonormal if any two translated and/or dilated wavelets satisfy the orthogonality

condition

| bna@omi@)de =nmbis ¥ momkle 2 (3.20)
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The wavelet basis is semi-orthogonal if any two translated wavelets at different resolution levels satisfy the

semi-orthogonality condition
oo
/ Vo) i(x)de =0, n=m VY nmkleZ (3.21)
—0oQ

An approximation of the function f(z) at the n — th resolution level may be expressed as the orthogonal

projection of f on W, as

Dof(z) = 3 busthns(z),  where bug = / " () (2)da (3.22)
& —oo

Thus, approximation of function f(x) at higher resolution can be obtained as

An-i-lf(m) = Zan,k¢n,k($) + Z bn,k"pn,k(m) (323)
k k

These multi-resolution properties of wavelet functions provide the basis for adaptive enrichment in the

regions where residual is higher at the lower resolution level.

3.4.2 Selection of the Wavelet Function

In the present formulation, approximation for acceleration field is constructed on derivative of the stress
interpolation functions. Also, the calculation of error norm discussed in section (3.4.4) involves second
derivatives of stress functions. Therefore, it is desirable that the stress functions be differentiable and have
explicit analytical expressions. One of the most commonly used wavelet functions is Daubechies’ compactly
supported orthonormal wavelets [21, 23]. However, they are constructed through recursive algorithms and
do not have explicit analytic expressions, therefore are not suitable for present formulation. On the other
hand, Chui-Wang’s B-spline wavelet bases [16, 62] have explicit analytic expressions for scaling and wavelet

functions, and therefore are implemented in this formulation. Chui-Wang wavelets, which are semi-orthogonal
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and compactly supported, are based on B-spline functions, which are defined by recursive convolution

P(z) = 1 h N, —1(z — t)Ny(t)dt = / wl N,,,_1(t)dt (3.24)

where N () is a box function. The two scale relation for this scaling function is given as

m!

$(@) =Np(z) =) 2—m+lm¢(2x —k) (3.25)
e ! !

The corresponding wavelet basis, which satisfies the semi-orthogonality condition (3.21), is given by

2m—2
P(z) =27 3" (<1)F Ny, (k + D)NS (22 — k) (3.26)
k=0
where
(m) _ i ok m! B
N —kzzo( 1) 7k!(m_k)!¢(2w k) (3.27)

For B-spline wavelet bases, the scaling function and the wavelet function are compactly supported i.e. they

are defined on a finite closed interval. The support for scaling and wavelet functions are given by

SUpp ¢n,k 27"k, 27" (k +m)]

supp Yok = [277k,27"(k +2m — 1)] (3.28)

The finite number of non-zero translations that form a basis for interpolation on an interval [a,b] can be

identified using the above expressions for the support as

2"a—m+1) < kg < (20— 1) (3.29)

(2"a—m+1) <ky <(2"0-1) (3.30)

The total non-zero translations over the interval [a, b] for the scaling function and the wavelet function are

[2"(b — a) +m — 1] and [2"(b — a) + m — 1] respectively.
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3.4.3 Multi-resolution Wavelet Based Stress Functions

The wavelet based stress function is constructed by forming a basis by translating the scaling function at
resolution n. The required translations to span the volume of the element are calculated using expression

(3.29). The stress function is expressed as

0= 3 bur@)Bi(t) (3.31)

The stress function is enriched locally in the vicinity of wave front by using wavelet functions at resolution

n to form a basis at increased resolution level (n + 1)

0= I k(@)Br(t) + D Yni(@)Bi(2) (3.32)
k l

The local region can be enriched further to resolution level (n + 2) by using wavelet functions at resolution
(n 4+ 1) and so on until the desired accuracy is achieved. While forming the wavelet basis in the element,
some translations of the scaling and wavelet functions fall partially outside the element. In such cases, the

wavelets are truncated at the element boundary.

3.4.4 FError Criteria for Time Dependent Adaptive Enrichment

It is imperative to accurately determine the location of the wave front where the local enrichment of stress
function is to be carried out, for, it governs the accuracy of the solution and also determines the computational
cost. As seen in section (3.2), the kinematic equation (3.6) in the domain is satisfied in an average sense.
Therefore, the residual in satisfying this equation is used as error indicator for adaptive enrichment. The

error norm is defined as

1 | [aq (e — Vu)dz| y

1 .
N " 00 (3.33)

le| =
max

where AQ and |€| 4, are volume of subdomain and maximum strain in the element respectively. The domain
is discretized into 2" number of subdomains and error norm (3.33) is calculated in each subdomain. The

subdomains for which the norm exceeds a pre-defined tolerance, are the regions where enrichment is to be
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carried out using the procedure outlined in previous section. This increases the resolution level to (n + 1).

The posteriori error analysis and corresponding enrichment is repeated until the tolerance is met.

3.5 Solution Method and Numerical Aspects

3.5.1 Solution for the Field Variables

The matrix equation (3.13) of the weak form of complimentary energy principle can be rewritten as

{08Y" {H{B} + {Rr} + as[M]{B} — [Gl{ar}} + {{R:}" — {8}"[G]} {6ar} =0 (3.34)

Since {68} and {dgr} are arbitrary and can be varied independently, and the corresponding bracketed terms
are independent of these variations, the two bracketed terms should vanish individually. Setting the first

bracketed term in equation (3.34) equal to zero gives the local equations for each element:

[HM]e{/B}e = [G]e{qr‘}e - {RI}e (335)

where

Huyle = [H]e — a5[M], (3.36)

Adding energy of all elements, and setting the second bracketed terms equal to zero gives weak form of global

traction reciprocity condition

SIGIT{BYe = {Ru}e (3.37)

If the element [Hj/]. matrix is invertible, the stress coefficients can be expressed in terms of nodal displace-
ments using equation (3.35). The static condensation of equations (3.35) and (3.37) gives linear system of

simultaneous equations
N N
S IGIT [Harl; [Gledar}e = 3 {Ra}e (3.38)
e=1

e=1

or [K[{gr}={F} (3.39)
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which can be solved for the nodal displacement vector {gr}.

3.5.2 Stability Conditions

The stability conditions for multi-field mixed variational formulations are derived in [4, 12, 104]. Within
this framework, the stability conditions for the stress-displacement field variational problem in the dynamic

hybrid FEM can be stated as follows:

e The matrix [Hs] should be positive definite. This also ensures invertability of the [Hps] matrix. From

the definition of [Has] in equation (3.35), the necessary condition for it to be positive definite is
{«} Huyl{z} >0 = {2}"[H]{z} >0 & {z}"[M]}{z}>0

i.e. the matrix [H] should be positive definite and matrix [M] should be positive semi-definite. For
matrix [H] to be positive definite, firstly, [S] be positive definite, which is true for elastic problems.
Secondly, the finite-dimensional stress subspace 7 should be spanned uniquely by the basis functions
[P]. This is satisfied by assuring linear independence of the columns of basis functions [P]. As
discussed in previous section, stress function contains a basis formed by low resolution scaling function
everywhere in the domain, and is enriched locally using wavelet function. Though the wavelet functions
are orthogonal to the scaling function, the orthogonality is destroyed near the element boundaries where
scaling and wavelet functions are partially outside the element. In situations where only a small portion
of the scaling and wavelet functions fall inside the element, these portions could become dependent or
nearly dependent. To encounter this problem, the rank of the [P] matrix is first determined from the

diagonal matrix resulting from a Cholesky factorization of the square matrix

B = [ P[Pl

e

Nearly dependent columns of [P] will result in very small pivots during Cholesky factorization. The

corresponding wavelet function terms are dropped from the stress function to prevent numerical inac-
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curacies in inverting [Has].

e To ensure non-zero stress field in the element for all non-rigid body displacement fields on the element
boundary uZ, the dimensions of the stress and displacement subspaces must satisfy stability condition
ng > ng, — 1, where ng is the number of § parameters, and ny. is the number of displacement degrees
of freedom on the element boundary. In this one dimensional formulation, this is always satisfied if

ng > 1.

Another important factor that determines the stability and accuracy of solution of dynamic problems is
the stability of the time integration scheme. Newmark method, being used here, is unconditionally stable and
most accurate when the integration constants in equations (3.10) and (3.9) take values § = § a = %, which
is constant-average-acceleration method, also called trapezoidal rule [6]. Therefore, there is no minimum

time step size requirement and it is the accuracy of the solution that decides the time step size. In wave

propagation problems, the time step size is determined as [6]

where L,, is the critical wavelength to be represented, n is the number of time steps necessary to represent

the travel of the wave, and ¢ = ,/% is the wave speed.

3.6 Numerical Examples

3.6.1 Wave Propagation through Layered Media

The problem of wave dispersion in layered media presented in [46] is considered here. A layered bar composed
of two materials with properties F1 = 200 GPa, E» = 5 GPa and p; = ps = SOOOkg/m3 is shown in figure
3.1. The lengths of the two layers in a unit cell are Iy = lo = 0.01 m and there are 50 unit cells. One end
of the bar is fixed while other end is subjected to impact load F(t) = F, ﬁt‘* (t—=T)*1 - h(t-T),
where T = 15.71 pus is the duration and Fy = 50 KN is the amplitude of the impact load, and h(t) is

heaviside function. Response of ABAQUS model with 50 T2D2 elements per layer is taken as a reference
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and the response of hybrid finite element model with one element per layer is compared. Figure 3.4 shows
displacement at £ = 0.5 m as a function of time. It can be observed that proposed formulation predicts the

phenomenon of dispersion very accurately.

3.6.2 Effect of Assumption of Periodicity

The homogenization methods often make assumption of periodicity in order to include microstrucutral effects
in the macro-response. In this example, the accuracy of such assumption is investigated. A composite bar
with properties given in previous example and with length I; = Iy = 0.1 m is considered. Figure 3.2 (a) and
(b) show a unit cell with periodic boundary conditions and a full model of 50 layers with fixed end conditions
respectively. In this case T' = 63 pus is the duration and Fy = 100 KN is the amplitude of the impact load.
Figures 3.5 and 3.6 show stress response near the boundary and away from the boundary as a function of time
respectively. It can be observed that interference of waves reflected from the boundary produce significantly
different response near the boundary. The assumption of periodicity is reasonably accurate away from the

boundary. However, response deviates as the reflected waves arrive and interfere with the incoming waves.

3.7 Conclusions

An assumed stress hybrid Voronoi cell finite element model for analysis of elastic wave propagation in het-
erogeneous materials is proposed in this work. Stress field in the domain and compatible displacement
field at the boundary are interpolated independently. The nonconforming internal displacement field is ap-
proximated in terms of stresses such that equilibrium equation is satisfied pointwise. Stress functions are
based on low resolution B-spline scaling functions which are adaptively enriched using wavelet functions in
the local region of high stress gradients determined by residual based posteriori error indicator. Adaptive
enrichment of the stress function exploiting multi-resolution properties of wavelet functions reduces the de-
grees of freedom of the problem and enhances the computational efficiency significantly. As demonstrated
through comparison with standard FEM packages, the proposed formulation predicts the phenomenon of

wave reflection, transmission, dispersion etc accurately.
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This work advocates multi-resolution wavelet enriched hybrid FEM as a potential method for micro-mechanical
response of composites under impact loading in one dimension. Wave propagation through heterogeneous
solids in two dimensions is more involving due to complex interaction of dilatational and distortional waves
at the boundaries of heterogeneities. In the subsequent work, this formulation will be extended in two
dimensions to develop dynamic VCFEM for investigating propagation of elastic waves in heterogeneous

microstructures.
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Figure 3.1: Wave propagation through layered media: (a) Unit cell, (b) Impact load as a function of time,
(¢) Composite bar
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Figure 3.2: Effect of assumption of periodicity: (a) Periodic model, (b) Full model
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Figure 3.4: Displacement response at the center of a layered bar: Comparison with Abaqus

32



0.02m (MPa)

Stress at x

0.125m (MPa)

Stress at x

I
I
I
L I
I ‘
I ”‘
I ‘i
I
+ |
| ”!"
[ I |
[
1
I

(N
AL

3t B
— — — Periodic Model
— Full Model
—4 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
Time (s) %1072
Figure 3.5: Stress response near the boundary
x10°
4
3l i
oL i
A \ |
T\ I ! !
‘ . hn |
| I
| \ p [T} [ | | \
1+ Sy I Bl
| Vg il
. \ (N AL \ I | [
(NN W N [ [
0 W BN [EEE AW !
[ I (L RISV
1 |
A bl |
-1+ it I ! i | ': 1
| 1 | A |
H’\ i o
[ I N \
ok ‘i " ] W
-3F
— — — Periodic Model
— Full Model
_4 Il Il Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
Time (s) X107
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Chapter 4

The Extended Voronoi Cell Finite
Element Model For Multiple Cohesive

Cracks Propagation

4.1 Introduction

Numerical analysis and simulation of the growth of multiple cracks in materials is a challenging enterprise
due to morphological and constitutive complexities that govern its growth. The conventional finite element
method suffers from very slow convergence since the element formulation does not account for high gradients
and singularities. Even a very high density mesh cannot overcome pathological mesh dependence near the
crack tips and avoid biasing the direction of crack propagation.

In this chapter, an extended VCFEM or X-VCFEM is developed for modeling the growth of multiple cohe-
sive cracks in a brittle material. The model accounts for interaction between cracks and invokes an adaptive
crack growth formulation to represent the continuously changing direction of evolving cracks. X-VCFEM
augments the conventional VCFEM model by incorporating multi-resolution wavelet functions [38, 47, 71]

in the vicinity of the crack tip, in addition to branch functions based on level set methods. The incremental
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crack propagation direction and length are adaptively determined by a cohesive energy based criterion. No
remeshing is needed in X-VCFEM for simulating crack growth, and this adds to its desirability and effec-
tiveness. It begins with the X-VCFEM formulation, followed by numerical example showing the convergence
of this model. Then, X-VCFEM is used to understand the influence of cohesive parameters, e.g. peak
stress and critical separation on crack growth in a monolithic brittle material. Subsequently, the effect of
morphological distributions including crack interaction, clustering, alignment, etc. on growth and merging

are studied as important factors critical to the failure process.

4.2 Voronoi Cell Fem Formulation for Multiple Propagating Cracks

The Voronoi cell finite element mesh for a brittle matrix with a dispersion of pre-existing cracks is shown
in figure 4.1(a). The typical Voronoi cell mesh corresponds to an unstructured mesh that is generated by
Dirichlet or Voronoi tessellation of the domain, based on the position, shape and size of heterogeneities (in-
clusion, void, crack etc.). Various tessellation schemes have been discussed and developed in [35, 61]. While
the name Voronoi cell has been historically used because of its association with point seeds in the generation
process, the cells used in VCFEM may be variants of this construct. Essentially they represent neighbor-
hood or regions of influence for each heterogeneity. Subsequently the Voronoi cell FE formulation considers
each cell as a super-element consisting of a heterogeneity and its neighborhood surrounding matrix [61, 80]
without any further subdivision. The interfacial debonding analyses in [35, 53] invoke the cohesive zone
models to represent the growth of interfacial crack. However the main difference between that formulation
and the present one is that, in the present case the path of the crack is arbitrary and is a-priori unknown.

This poses significant challenges that have been overcome with the X-VCFEM formulation.

Consider a pre-cracked microstructural region Q consisting of N cracks as shown in figure 4.1(a). The
region is divided into an unstructured finite element mesh of arbitrary Voronoi cells. A typical VC element
Q. containing a crack and its neighboring matrix is depicted in figure 4.1(b). The element boundary 09, with

outward normal n¥ may consist of regions of prescribed traction I';., prescribed displacement I, and inter-
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element edges I';,e, i.e. anf = I'te UTwe U me- Furthermore, each element consists of a crack containing
a fracture process zone that is represented by a cohesive zone model. The incompatible displacement field
across the crack I'.,. is facilitated through a set of connected node-pairs along the crack length. The node-pair
merges at the crack tip by enforcing the same displacement. The normal along the crack path is denoted by

¢r. For the VCFEM element formulation, the micromechanics boundary value problem is described as:

Find (o,u”,u) € T x VF x V" satistying

- B
V-o+f=0 and g—azeeﬂe (a)
E _ = E _ ¢ cr _ gcoh
u’=tonl, , o-n”"=tonly and o-n“ =t°"on T, (b) (4.1)

The variables o, €, B and f are the equilibrated stress fields, the corresponding strain fields, the complimen-
tary energy and body forces per unit volume respectively in the element interior. 7, V¥ and V°" correspond

to Hilbert spaces containing the stress and displacement solutions respectively. u®

is the kinematically
admissible displacement field on the element boundary QF and u°" represents the displacements on the
internal cohesive-crack surfaces I'c.. Variables with superscript E are on the element boundary while those
with superscripts cr correspond to the crack surface. The traction t¢°* between node-pairs on the crack
surface are modeled by the cohesive zone traction-separation law. The VCFEM formulation is based on
the assumed stress hybrid finite element method, in which stationarity conditions of the element energy
functional in the variational principle yields weak forms of the kinematic equation and traction reciprocity

conditions, as Euler equations. In the small deformation elasticity incremental formulation for evolving

cracks, the element energy functional II, is defined in terms of increments of stresses and displacements as:

He(aij,Aaij,uf,Auf,ufT,AufT) = —/ AB(Uz'j,AUij)dQ—/ (-ZijAO'ide

e

+ / (045 + Agyg)n} (uf + Auf)doQ — / (i + AG) (u; + Au®)dTy,
Qe Tim

1 1 2 2
+ /1 (035 + Aoij)ng" (ui" + Aug")dl ., — /2 (0ij + Acij)ng" (ui" + Aug")dl,
uCT+AuC7‘ uc’r Auf?’r‘ 1 2
- [ / f5hd(uf” — UYL 42)
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where B = %cr : S : o is the complimentary energy density and AB(o;;, Aoy;) is its increment due to stress
increase. S is the material compliance matrix. The notations (i) and (z) represent two sides of the internal
cohesive crack surface. The last term provides the work done by the cohesive tractions #$°" due to crack
surface separation. In VCFE formulation, the equilibrium conditions and constitutive relations in the matrix
and the compatibility conditions on the element boundary and crack surface are satisfied a-priori in a strong

sense. The element kinematic equation:

Vu, — ¢ in Q, (4.3)

is however satisfied in a weak sense from the stationary condition of the element energy functional in
equation(4.2). The weak form is obtained by setting the first variation of I, with respect to stress in-
crements to zero, i.e.
OAB
—/ (— + eij) 6AUZ']' dQ + 6AUZ']' né (UZE + Auf) dofl,
. 6A0—1] 89, J

1 1 2 2
+ [, 6Aci; nf" (ui" + Aui") dler — [, 6A0i; nf (ui" + Auf") dl'er = 0 (4.4)
Ter Ter

Solution of equation (4.4) yields domain stresses. Furthermore, the VCFE formulation assumes weak sat-
isfaction of the traction reciprocity conditions on (i) the inter-element boundary I'y,., and (iii) the domain

1 2
traction boundary T'¢, and (iii) the crack surfaces ', and T,:

(035 + Aaij)n]E+ = —(oi + Aaij)nf ~ onT,,. (inter-element boundary)
(03 + AUz’j)nf = ti + At; on I'te (traction boundary)
(05 + Aoi;)'n§" = (0i + Aoyy)°ng" on [e, (4.5)

In the variational principle, the weak form is obtained by setting the first variation of the total energy

1 2
functional II = Eévzl II. with respect to the displacements Au®”, Au°" and Au®" respectively, to zero, or
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N
> / [(03; + Aoyj)nsouf dOQ — (t; + At;) | ouf dTyy =0
e=1 892 th

Voul e VP ={vE e H(00F) :vE =0 0on Ty} Ve on a9, (4.6)

and
L1
/1 [(ij + Aoyj)ni" — ¢;] dui” dler =0
Cer
2
/2 [(ij + Adij)ni™ + B15uCT dlr = 0
Ler
Véu" € V", Veon ., (4.7
Er AT o AyeT 1 2
where ¢ = [ tou T A te°hd(u$m — ug™) is the cohesive energy function and ¢} = —ai‘?r.

ug”

u’L K

4.2.1 Cohesive zone models for crack propagation

Cohesive zone models, introduced in [5, 25] and developed in [63, 64, 65, 97, 30, 33, 39, 68], are effective in
depicting material failure as a separation process across an extended crack tip or fracture process zone. In
these models, the tractions across the crack reach a maximum, subsequently decrease and eventually vanish
with increasing separation across the crack. The cohesive model used in this chapter is a three parameter
rate independent linear cohesive model, proposed in [39, 68]. This is an extrinsic (two stage) model which
has an infinite stiffness or slope in the rising portion of the traction-separation law up to a peak traction
value. This is followed by linear descending segment till a zero traction value is reached. The model assumes

a free cohesive energy potential ¢ such that the traction across the cohesive surface is expressed as:

0 0¢
coh __
t 65nn+ (%tt (4.8)
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Here 6,, and d; correspond to the normal and tangential components of the opening displacements over the

cohesive surface in the n and t directions respectively. An effective opening displacement is defined as

where 3 is a coupling coefficient to allow assignment of different weights to normal and tangential opening

displacements. Consequently the cohesive surface traction reduces to

(B*0;t +,n), where t= % = \/tg"’12 + ﬂ*2t§°h2 (4.10)

tcoh —

| =+

where t¢°" and t§°" are the normal and tangential components of surface tractions. The effective cohesive

force t in this model for increasing ¢ takes the form

omeal0e=d)  y§ < 4,
t= ‘ (4.11)

de corresponds to the separation at which ¢ goes to zero and 0,4 is the peak value of t. The effective normal
traction-separation response of this model is depicted in figure (4.2). In the softening region, Unloading from
any point on the traction-separation curve, proceeds along a linear path from the current position to the
origin as shown by the line BO in figure 4.2. The corresponding ¢t — § relation is

t= U%”‘“” 566_@5 V8 < Smas < e (4.12)

Reloading follows the path OBC with a reduced stiffness in comparison with the original stiffness. Traction
vanishes for § > 4.

For negative normal displacement (compression), stiff penalty springs with high stiffness are introduced be-
tween the node-pairs on the crack face. To define the tangent stiffness matrix, it is necessary to distinguish

between crack initiation (§ = 0) and crack propagation from an initialized state (§ > 0). In the former,
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%" = ¢, and t{°* = 0 are assumed, which implies that the initiation is in pure mode I. The cohesive pa-

rameters in this study are calibrated from experiments done for epoxy-steel composites as discussed in [53, 35].

Recent experimental-computational studies on composites, conducted in [93] show that the three or four
parameter cohesive models are more suitable for modeling interfacial debonding in comparison with the two
parameter models based on Ferrante’s law [63, 64, 65]. Similar conclusions have also been drawn in the work
by Ghosh et. al. [35, 53], where bilinear cohesive models were chosen to study interfacial debonding in fiber

reinforced composites.

4.2.2 General element assumptions and weak form

In the absence of body forces, two dimensional stress fields satisfying equilibrium relations can be generated
from the Airy’s stress function ®(z,y). In the incremental formulation, stress increments are obtained from

derivatives of the stress functions A®(z,y) as:

Aoy agA;I’

Y
Aoy, | =| 242 | =[P(z,y){A8} (4.13)
Adgy — G

where {AS} is the column of unknown stress increment coefficients, associated with the stress interpolation
matrix [P(z,y)]. Convergence properties and efficiency of VCFEM depend on the choice of ®. These
functions should adequately account for the geometry and location of the heterogeneity in the element.
Polynomial functions alone do not contribute to this requirement and hence lead to poor convergence [61, 80].
Consequently, stress functions in X-VCFEM are constructed from different expansion functions that have
complementary effects on the solution convergence for the propagating crack. Compatible displacement fields

satisfying inter-element continuity on the element boundary dQF and intra-element continuity on the crack
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face I'., are generated by interpolation of nodal displacements, [35, 61, 80] as:

(Au) = [LJ{AF}  on 0Q,
(AT} = [Lo {AGT} on T,

(AU} = [Lo {AG™} on Ty (4.14)

12
The interpolation matrices [Le], [Ler], [Ler] for the nodal displacements on the respective boundaries are

constructed using standard linear or hierarchical shape functions.

Remark: Tt is desirable that the displacement interpolations on the crack surface in equation (4.14) have ad-
equate resolution, consistent with the high resolution in the stress fields near the crack tip. To accommodate
this, hierarchical shape functions are added to standard linear shape functions to describe displacements on

the crack surface as:

u” =" Ni(s) xqf" (4.15)

i=1

where Ny = 3(1—s), No = $(1+35), N3 = (s> — 1), and Ny = §(s* — s). The first two are the standard
linear shape functions, while the last two are the hierarchical shape functions in natural coordinates s. The
degrees of freedom corresponding to higher order shape functions (i.e. to quadratic, cubic, etc.) cannot be
interpreted as nodal values of displacement. Instead, they are values of some higher order derivatives of the

solution at the midpoints (or linear combination of these derivatives).

Substituting the interpolations of stress and displacement fields from equations (4.13) and (4.14) into
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equation (4.2) results in the matrix form of the element complimentary energy

IT,

—%{B +ABY HI{B + ABY + {8+ ABY [G]*{a° + Aq°}

+ {B+ABYTIGTHa" + Ad"} — (i} {a* + Ad}

2
{8+ ABYT[G{q" + Aq™)

by Ader Ee AZer L
- / / £ d(uS™ — ulT)dT, (4.16)

c'r_ucr

where

o= [ ErsPae e [P Lddn

e

6] = [, P Lerld (67 = [, (P e i

{t} {t+ AT} [L,)dTym (4.17)

Fim

Construction of appropriate stress functions with optimally high resolution is necessary for accurately de-

picting high stress gradients near the crack tip.

4.2.3 Stability conditions

Following the stability conditions derived for displacement-based and stress-based finite element approxima-
tions in [4, 12, 104], the stability conditions of the stress-displacement field variational problem in X-VCFEM

depend on the following conditions.

e The matrix [H] should be positive definite. From the definition of [H] in equation (4.17), the necessary
condition for it to be positive definite is that the compliance tensor [S] be positive definite, which is

true for elastic problems.

e A second condition is that the finite-dimensional stress subspaces 7 be spanned uniquely by the basis
functions [P]. This is satisfied by assuring linear independence of the columns of basis functions [P],

which also guarantees the invertibility of [H].
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e Additional stability conditions should be satisfied to guarantee non-zero stress parameters 8 for all
non-rigid body displacement fields on the element boundary uf or on the crack face u¢". This is
accomplished by careful choice of the dimensions of the stress and displacement subspaces, i.e. ng >

nf +ng"*2—3, where ng is the number of 2 parameters, and an and ng" are the number of displacement

degrees of freedom on the element boundary and crack face respectively.

4.3 Creation of Enriched Stress Functions in X-VCFEM

VCFEM formulations for micromechanical analysis of heterogeneous materials have incorporated polynomial
and reciprocal stress functions based on analytical micromechanics results in [35, 61, 80, 36]. In the present
work, the heterogeneity is in the form of an evolving cohesive crack. Two conditions need to be considered
in the choice of stress functions. The first is that it should adequately represent crack tip high stress
concentration as required by the cohesive zone models. Polynomial functions alone are unable to satisfy
this requirement and hence suffers from poor convergence. The second condition is that the stress function
should account for stress jump across the crack surface. The stress functions in X-VCFEM incorporate three
different components, namely: (a) a purely polynomial function ®P°% to yield the far field stress distributions
away from the crack tip, (b) a branch function ®*7en¢h that is constructed from level set functions, and (c)
a multi-resolution wavelet function ®¥** to account for the moving crack tip stress concentration. Thus,

d = (}poly + (I)branch + @wvlt‘

4.3.1 Pure Polynomial Forms of Stress Function:

The pure polynomial component of the stress function ®P°/¥ is written in terms of scaled local coordinates

~

(6 = &52= , ) = £3¥) with origin at the element centroid (2., y.), as:

Pnsqn

(I)poly(éjﬁ): Z épﬁqﬂpq (4-18)

p=0,94=0

The scaling parameter in the coordinate representation is L = \/max(z — z.) x max(y — y.)

V(z,y) € 89.. The use of the scaled local coordinates (£,7), as opposed to global coordinates (z,y) in the
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construction of stress functions, prevents ill conditioning of the [H] matrix due to the high exponents of
(z,y) in ®P°. As discussed in [88], invariance of stresses with respect to coordinate transformations can
be ensured by a complete polynomial representation of ®7°!¥, while stability of the algorithm requires linear

independence of the columns of stresses derived from ®PoV.

4.3.2 Branch Stress Functions Using Level Set Methods

The branch function ®°727¢h facilitates jumps in stresses across the crack surfaces. These functions should
not affect the solutions in the continuous region beyond the crack. This construction requires a functional
representation of the surface or line of discontinuity. Level set methods, introduced by Sethian [1, 85] for
following the evolution of interfaces, is ideal for representing arbitrary contours. The method has been used
by Belytschko and coworkers in [10] for the construction of branch functions associated with the partition of
unity in a displacement based FEM formulation. The standard level set methods invoke continuous evolution
of the entire surface of discontinuity. However for problems involving cracks, the only evolution occurs at the
crack tip and the crack surface needs to be frozen behind tip. A vector level set method has been developed in

[100, 99] to freeze the crack surface in accordance with geometric updating. This method is used in this work.

An approximation to the crack surface T'., in figure 4.1 is constructed to describe the discontinuous
stress fields across crack paths. As shown in figure 4.3(a), the discontinuous surface is expressed by a signed

distance function f(x) defined as
7) = min || x ~ % || sign(n* - (x ~ %) (4.19)

where x is a point on the surface of discontinuity and n™ is a unit normal pointing in the direction of the
region of positive distance function.

Consequently, X is the closest point projection of any point x on I'c.. In order to describe the crack
path accurately, the signed function f(x) is evaluated at every integration point in the Voronoi cell element

directly. The process of constructing branch functions involves steps that are described below.
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¢ Radial distance functions to the two crack tips r;(x) and r2(x) and the corresponding angular positions

01(x) and 03(x) are depicted in figure 4.3(a). These functions are expressed in terms of coordinates of

local systems (£,n) with origins at the crack tips. For the local system at crack tip 1, the coordinates

of x are (&1,7m1). In accordance with the definition of the signed distance function, the radial distance

and angle functions are expressed as

ri(x) =4/& +n7 and 61(x) = <

,

W—sin’l;e & <0,f>0

—sin"'L 1 £ <0,f<0 (4.20)

T1

sin™'L & >0

T1

Similarly, the radial distance and angle functions for the coordinate system at crack tip 2 are defined

as:

r2(x) = m and 65(x) = <

’

m—sinT'L & <0,f>0

T

—sin*1i2 -7 & <0,f<0 (4.21)

T

sin_li2 & >0

e The branched stress function is constructed in terms of the functions f(x), 61, r1, 02, and 72, as:

Snyln

0 0
gbranch — %" rfsin;lrgc%éffﬂ{ﬂst (4.22)

§=0,t=0

The terms 77 and r2 in ®*7"¢h are necessary for avoiding crack tip singularity in the stresses due to

this function and for improving the accuracy. Along the tangential extension to the crack path at the

tip 1, ®brench s zero since sin2 = 0. Hence ®°72"¢" does not contribute to the stresses ahead of the

2

crack tip 1. In an analogous manner, ®7*"°* goes to zero along the extension to the crack path at

the tip 2, since cos%2 = 0. Therefore ®*7%"°" does not contribute to the stresses in this region also.

However, along the crack surface between the two crack tips, sin%1 = +1 on both sides of the crack, and

COS

1. This renders ®°7*"¢" in equation (4.22) discontinuous across the crack path. In ®brench g,

is used to create the discontinuity across the crack surface, while 6 eliminates the discontinuity ahead
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of crack tip 2. In some special instances with only one crack tip such as a panel with an edge crack,

equation (4.22) may be simplified by removing ro and 62 dependence to yield

branch 2. 01 4
Qe = Zﬁsmgﬁfnlﬁst
s,t

(4.23)

A coordinate transformation is required to obtain stress components in the global coordinate system from

branch(¢ n) based on the local coordinate system.

82¢b'r~anch 82q>branch
brameh ong B
ranc
82(I>branch 82<I>bra,nch
g g -
T Ty _ [Qb]T 0€10m o8¢7
Ozy  Oyy

52 gbranch _ §2gbranch
on3 08202
o2pbranch  g2gbranch
T T 92012 [‘)Eg

(Qs)]

(4.24)

where [Qp] is the transformation matrix from (£1,m1) and (€2,72) systems to (z,y), and is expressed as

(4.25)

The branch function is evaluated at every integration point in the element. A typical function ®trench

for s =0 and t = 0 is plotted in figure 4.3(b). The plot shows that the function is continuous everywhere in

the domain except across the crack surface. The example of a double cantilever beam under a sliding load,

as shown in figure 4.7, explains the effect of level-set method based branch functions. In figure 4.7(a), the

dimension is a = 1.5m. Figure 4.7(b) shows the stress o, plots as a function of y at © = —0.3m. The stress

functions are constructed with and without branch functions in this example. o,, changes its sign with a

jump in its magnitude on different sides of the crack and the jump at y = 0 is predicted well. However, the

transition is gradual from negative to positive values for the curve without branch functions. Although the
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transition takes place in a short interval, the method is not able to catch the discontinuity without branch
1 2
functions. This also results in the matrices [G°"] and [G"] in equation (4.16), on different sides of the crack

to be linearly dependent on each other (one is the negative of the other).

4.3.3 Multi-resolution Wavelet Functions for Modeling Cohesive Cracks

Wavelet bases, discussed in [16, 62], are L?(R) and generally have compact support. Only the local coeffi-
cients in wavelet approximations are affected by abrupt changes in the solution, such as for shock waves. This
localization property makes the wavelet basis a desirable tool for problems with a high solution gradients,

concentrations or even singularity. A brief introduction to wavelet basis functions is provided next.

Principles of wavelets and multi-resolution analysis

The construction of wavelet functions starts from a scaling or dilatation function ¢(z) and a set of related

coefficients {p(k) }rez which satisfy the two-scale relation

$(x) =Y p(k)(2z — k) (4.26)

The scaling function has a compact support only if many coefficients p(k) are non-zero. Translations of the
scaling function ¢(z — k) form an unconditional basis of a subspace Vo C L?(R). Through a translation of
¢ by a factor of 2™ and dilation by a factor of k- 27" the unconditional basis is obtained for the subspace
Vp, C L3(R) as

n k() = 2"°$(2"x — k) (4.27)

for a resolution level n. The scaling function ¢ is defined as orthonormal if translations at the same level of

resolution satisfies the condition

/ G (@)bna(@)de = 600 ¥ mi k1€ Z (4.28)
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Consequently, the best approximation of a function f(z) in the subspace V,, of L?(R) is expressed as the

orthogonal projection of f on V,, as:

Anf(z) = Zan,k@l,k(x), where an i = /oo f(@)bn i (z)dz (4.29)
x —o0

Approximation of f(x), can be made at different resolution levels, and these approximations in subspaces

-, Va1, Vo, Vaga, ---, follow the relation

{0}=V_uC---CV1CWCVIC---C Vo =L*R), where

limn—sooVn = J Vo is densein L*(R) and limn oo Np Vo = {0} (4.30)

In the multi-resolution level transition, the information lost in the transition from level V,,;; to level V,, is
characterized by an orthogonal complementary subspace W,,. A basis for the subspace W,, can be obtained

is in the same manner as for scaling function, i.e. by dilating and translating the mother wavelet function
Y(@) =) ak)y(2z — k) (4.31)
The subspaces spanned by the wavelet functions have the following essential properties:

@) Vappr=V,®W, V, ie. W, is the orthogonal complement of V,, toV,41;
(i)  For orthonormal bases, W1 is orthogonal to W,;;

(4ii) For orthonormal bases, @5 __ W, = L*(R) (4.32)

An approximation of the function f(z) at the n — th resolution level may be expressed as the orthogonal

projection of f on W, as

f o Duf@) =S busthni(e),  where by = / " F@)nn(@)da (4.33)
% —o0
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Due to the orthonormality and multi-resolution properties of wavelet basis functions, higher level approximate
solutions can be generated from results of lower level solutions (see [16, 62]) by selective superposition of
complementary solutions. The use of adaptive enrichment is very attractive to those regions where a pre-

determined ’error or residual’ tolerance is not met at the lower level.

Selection of the wavelet function

Various wavelet functions have been proposed in the literature for numerical solutions of ODEs and PDEs.
These functions have been incorporated in the method of weighted residuals like the Galerkin’s method and
collocation method to solve problems with multi-level features in [38, 47, 71]. Among the large number of
wavelet functions proposed are the Haar function [40], the Meyer’s wavelets [57], the Chui-Wang’s B-spline
wavelets [17], etc. One of the most commonly used wavelet functions is Daubechies’ compactly supported
orthonormal wavelets [21, 23, 38]. However, they are constructed through recursive algorithms and do not
have an explicit analytic expressions. This makes it is difficult to obtain their first and second derivatives,
which is a requirement in X-VCFEM for deriving stresses in terms of stress functions. Also the orthonormality
of the Daubechies wavelet cannot be transferred to the orthonormality for stresses by differentiation, and
hence they are not considered to be suitable for stress functions in X-VCFEM. Alternatively a family of
Gaussian functions, for which the first and second order derivatives are popular wavelets bases [11, 27, 52],
is implemented in the representation of X-VCFEM stress functions and stresses. The expressions for the

Gaussian function and its n — th order derivative are:

@

Gz) = e T2 and 99 = (—1)n L (e~ (59/2) (4.34)

dzn

The dilation and translation parameters a and b respectively can assume arbitrary values and can be changed
in a continuous fashion. The ability of wavelets to translate diminishes the need to re-define new elements
or remesh in conventional FEM solution of problems with moving boundaries. By changing translation
parameters, the multi-levels of wavelet bases can be made to closely follow a moving crack tip. Additionally

the dilation parameter with compact adjustable window support can be used to provide high refinement
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and resolution. Hence it is a convenient way of moving the stress concentrations using the multi-resolution

properties.

Multiresolution wavelet based stress functions for crack problems

The wavelet based stress function is constructed in a local orthogonal coordinate system (&,7), centered at
the crack tip. The £ direction corresponds to the local tangent to the crack surface. The corresponding

stress function ®,4 . 4 in the Gaussian wavelet basis is given as:

_(E=b\2 5 _(n—dy\2
q)a,b,C,d(gan) =€ =) /26 =) /Qﬂa,b,c,d (435)

where a,b,c,d are parameters that can take arbitrary continuous values. For implementation in multi-
resolution analysis involving discrete levels, the translation and dilation parameters should be expressed as
discrete multiples of some starting values. Consequently, these discrete values a,,, by, ¢ and d; are expressed

as:

r

am = aq - (trg)™ !

bp=n-b1-am
< (4.36)

ck =c1 - (tre)F !

dl=l-d1-ck
\

Here (m, k) correspond to the levels and (n,l) correspond to the discrete translation of the bases in the
(£,m) directions respectively. The parameters (a1, c;) are the initial dilating values at the first level m = 1,
while tr,(< 1), tr.(< 1) are the transfer rates from one level to the next higher one. The parameters by, d;
represent the starting values of a step translation quantity at the m — th dilation level. The narrow (higher
level) wavelets are translated by small steps, whereas the wider (lower level) wavelets are translated by large
steps. Parameters tr, = tr. = 1 and b; = d; = 0 imply no dilation and translation respectively. Parameters

o, Cc, and dy are counterparts of ag, a., and by in 7 direction. With the specific relations between dilation
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and translation parameters, the Gaussian wavelet enriched stress function in equation (4.35) becomes

_(§=bn\2 (=412
(I)m,n,k,l(&an) =e€ (Zt) /26 ( k ) /Qﬂm,n,k,l (437)

The family of wavelet enriched stress functions in equation (4.37) are not orthonormal, but they construct
a linearly independent basis [22]. This leads to robustness and high precision in the reconstruction of any
function f even with low level coefficients. The wavelet enriched stress function in X-VCFEM is thus written
as

n
s " Kl

v (g, m) = > By it (€,1) (4.38)

m=1,n=—"2 ,k=1,=0

The corresponding stresses are:

( o2 [ y-(Shmm? /2~ (22 )
Mo, 75 ke yln
Zm:l,n:—"T",kzl,lzo on? /Bm,n,k,l
82(I>wvlt
O¢g an2 _4
o —(8L=0ny2 0 —(TZE)2 2
_ a2pwlt = na g o le am e k [
o = = Mn, 3% kn,ln
m o¢® Em:l,n=—"7",k=1,l=0 52 ﬂm,n,k,l
82¢wvlt
o _oe
&n 0€0n

52 (ot Ela;:n )2/26_(%)2/2

_ Em'nanTn’knaln B
. m=1,n=—"22 k=1,1=0 8Edn m,n,k,l |

(4.39)

The stress components in the global coordinate system are obtained by the transformation from the local

coordinate system as

wvlt
82¢wvli 82<1>w'ult
Ozx Ozxy 2 58
= [Qw]T : . , ln [Qw] (4-40)
8 ¢‘w‘u t 8 q>'u)1j t
Ozy Oyy ~ TBeam Be2
where [Q,,] is the transformation matrix from (£,7) to (z,y):
on  On
3y O
Qu=| 7 ™ (4.41)
28  9¢
oy oz



Figure 4.4 shows the support region for the wavelets enriched ®**!*(¢,n) in a X-VC element. This region is
positioned symmetrically in the vicinity of evolving crack tips. The crosses (X) corresponds to the position
of each wavelet basis function by, d,, at a lower level, and the squares () correspond to additional locations
at a higher level in the multi-resolution algorithm. Only the points at the top half are shown in the figure

due to symmetry.

The method of implementation of the multi-resolution wavelet enriched stress functions in X-VCFEM is

described below.

1. For the starting level m = k = 1, 20 points marked by crosses (x) in figure 4.4 (a), are used to delineate
the wavelet enriched function ®***(£, ) in equation (4.38). This correspondstom =1, n =5, k=1

and [ = 4.

2. With ensuing higher levels in the multi-resolution wavelet functions according to the equation (4.36),
higher level wavelet bases are added to the stress function as marked by squares (O) in figure 4.4
(b). The addition is done adaptively in accordance with error criteria discussed in section (4.3.4). A
refinement in the starting region of wavelet enrichment occurs in each added level, i.e. the window size
of additional wavelet basis functions is smaller than ones at a lower level. This allows a zoom in to

catch higher gradients that are missed at the coarser scales.

3. The process of successive multi-level refinement can continue till a predetermined error tolerance is

reached.

Remark: The line of the cohesive crack is likely to intersect the region of support of the wavelet bases func-
tions. It is important for the numerical algorithms to assure that wavelet functions based on one side of the
cohesive crack does not contribute to stresses on the other side. The influence of wavelet stress functions
should be cut off across this line of discontinuity by establishing a truncated effective support domain for the
wavelet function. This is accommodated by ignoring the contribution of quadrature points in the numerical

integration on the other side of the crack as detailed in section 4.5.3.
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In summary, the stresses in an element are computed by adding contributions from equations (4.20),

(4.22) and (4.39), to yield

poly branch wolt

Ozzx Oz Oz Ozz

Oyy =\ %w T o T o =

Oy Oy Oy Oy

e e e e
1817‘1
[[P]Poly [P]branch [P]wvlt] . ,Bst — [P]e {B}e (4‘42)

/Bm,n,k:,l

4.3.4 Error measure for adaptive wavelet enrichment

The Euler equation (4.3) indicates that the error in the kinematic equation, which is satisfied in a weak
sense, may be primarily attributed to the lack of adequate resolution in the equilibrated stress fields. A
strain energy based element error measure, derived in [80], is extended to the present problem. Let a stress

field be enriched from a level n to level n + 1 by adding the wavelet-based enrichment stress ™", i.e.

o_le'uel(n—i-l) — Ulevel(n) + genr (443)

The corresponding percentage change in the strain energy (SE = fQ 0:;Sijkor dQ), may be expressed as

SE(o.level:n+1) _ SE(Ulevel:n)

A SE =
S SE(a-level:n—H)

x100% (4.44)

In view of the local properties of wavelets and stress concentration at crack tips, the strain energy in
equation (4.44) is calculated only in a small region around crack tip Qep,-. Adding levels is conditioned upon

the requirement that ASE is less than a preset tolerance, which in this work is chosen to be ~ 4%.
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4.4 Solution Method

Crack growth in multiply cracked materials is solved using an incremental approach, where a set of elemental

and global equations are solved in each increment for stresses and displacements.

1. Local equations for each element are obtained by substituting the stress interpolations of equation (4.42)

and boundary/crack face displacement interpolations of equation (4.14) in the element energy functional

equation (4.16) and setting its variation with respect to the stress coefficients A3 to zero. This results in

the weak form of the element kinematic relations

qe +Aq€
1 2
H{B+A8} = |[G] [G"] —[G7]| { ¢+ Aq"

2 2
qcr + A qcr

e

or in a condensed form

[H]e{ﬂ + Aﬂ}e = [G]e{q+ Aq}e

(4.45)

(4.46)

Since equation (4.46) is linear, the stress coefficients can be directly expressed in terms of the nodal displace-

ments, provided the element [H], matrix is invertible.

2. Subsequently, the weak forms of the global traction continuity conditions are solved by setting the

variation of the total domain energy functional with respect to the generalized displacement components to

zero. This results in the weak form of the traction reciprocity conditions

~

t
>lier € —1e) tsran =31 .,

e=1 e=1

—lcoh
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or in a condensed form:

SIGIT{B+ABYe =D {Temt}e (4.48)

The forces at the crack surface are expressed in terms of the cohesive energy as

1 1

i 5 b A e pZer L,
feon = / - / ) 5" d(uf™ — u§T) | dlep (4.49)
Cer 6chr u

2
Combining equations (4.46) and (4.48) and eliminating the stress coefficients {8 + AB}., results in the

equation for solving the generalized displacements

S A{IGIH Gl Ha + Aq} = > {Teat}e (4.50)

e=1 e=1

Equation (4.50) is a nonlinear matrix equation system due to the cohesive laws. Consequently, a Newton-
Raphson iterative solver is invoked to solve for the increments of nodal displacements. The linearized form

of equation (4.50) for the j-th iteration is

e=1

u a{Tezt}e T T -1 ’ j
{ZW —;{[G] [H] [G]}e} {da} =
{Z{Tezt}e - > {IGI"H] '[G]}e{a + AQ}} (4.51)

which, in a condensed form is

[KVdo’ = {RZ,,} — {RY, ) (4.52)

A numerical problem associated with modeling cohesive crack growth is the occurrence of snap-back as is
shown in the macroscopic load-deformation behavior plot of figure 4.5.

This has been discussed for a three point bending solution in [59]. For a deformation controlled process
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with monotonically changing deformation, the solution ignores the reverse portion of the displacement BCD,
occurring with snap-back. The Newton-Raphson solver, where the loading process is monotonically controlled
by incremental deformation or load conditions, exhibits a discontinuous drop from point B to point D. It
is obvious, that this solver needs to be augmented with the capability to account for the part BCD, i.e. to
decrease both load and deformation with the growth and opening of the crack. The arc-length solver has
been proposed in [19, 20, 84] as a method of overcoming this shortcoming by introducing an unknown loading
parameter (A + d)) to govern the load increments. Equation (4.52) is modified with this loading parameter

as
[K9)Vdg’ = (M +dN){RE,,} — {R,,} (4.53)

where both d\’ and dq’ are unknowns, and d\? can be either positive or negative. The additional unknown
d) requires the solution of a constraint equation, written in terms of the magnitude of the deformation of

all the nodes on the crack surface as

S (Au)? + (Ausm)?) = AP (4.54)
i€eCrk

where C'rk represents the set of all nodes on crack surfaces. A summary of the solution process is explained

in the flowchart of figure 4.6.

4.5 Aspects of Numerical Implementation

4.5.1 Adaptive criteria for cohesive crack growth

A. Direction of incremental cohesive crack advance: In linear elastic fracture mechanics, it is common to use

the “maximum hoop stress criterion” to determine the direction of crack propagation [7, 10]. Cracks are
assumed to propagate in a direction normal to the maximum hoop stress in this criterion. Since stresses at
crack tip are singular in LEFM, stress intensity factors are usually used to determine the direction of crack

propagation. This criterion is only suitable for K-dominated problems, where the size of the fracture process
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zone is small compared to the size of the specimen. A different criterion, based on the cohesive energy at
the crack tip is used in X-VCFEM. A relation between the cohesive energy ¢ for complete decohesion and
the critical energy release rate G has been established in [68] from the definition of the J—integral as:

R o6 de
GC:J=/ t—da:lz/ tds = ¢ (4.55)
0 81171 0

where R is the length of the cohesive zone. Consequently, the crack growth direction is estimated as that,
along which G, or equivalently the cohesive energy ¢ is maximized for a given crack tip state of stress. The
cohesive energy ¢4 at the crack tip A along any direction « can be expressed for an arbitrary separation

d(a) as:

() t(a)
ba(a) = < /0 t(a)d5> - ( / Ha) - %dt) (4.56)
7 A

A mawz

where t(a) = /(tc°h)2 + B=2(t¢°")2 is the magnitudes of the effective cohesive force. The corresponding

unit normal n and tangential t vectors along the direction a are expressed as

n = —sinai + cosaj ,  t=cosai+ sinaj (4.57)

The normal and tangential components of the cohesive traction force at an angle @ may then be deduced as:

coh

[29 Ng Ty OgaNyg + OgyNy
teoh t t OgyNg + OyyN
i z y zyllz yyTly

0zzSin’a — o,,8in2a + 0y cos?a

(4.58)
— 10428020 + 0440820 + 30y, 8in20x
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and hence the effective cohesive traction for direction « is

3

t(a) =

1 1
\/(amsinza — Ogysin2a + oyycos?a)? + ﬂ—Q(—Eamsin%z + 0gycos2a + §ayysin2a)2

(4.59)

The incremental direction of crack propagation is assumed as that which maximizes the cohesive energy at

A, according to the criterion:

0a(@) _ o g Pal@) _ g (4.60)

da Oa?

A combination of equations (4.56), (4.59) and (4.60), yield

5
94(0) = 5=— (0%, — t()?) (a)
Tmaz
dpa b, 0t
Do~ ommida 0T
ot

= [(04o8in’a — 0y sin2a + 04, c08% @) (0458iN200 — 20, C08200 — Oyysin2a) +

da

1 1
B_2(—§amsin2a + 04ycos200 + EomsinQa)(—amcosQa — 20,y8in2a + oy c082a)]/

1 1 0.5
((0gesina — o4ysin2a + oy cos’a)? + 5’2(—§amsin2a + 04ycos200 + anysinQaF)
=0 (b)
8?2 ) .
¢;4 = —[(04y8in2a — 0 sin’ @ — 0,087 Q) (044 SIN200 — 20, C08200 — 0y SiN200)
Oa Omazx

g1 . L 2 .
+8 (§amsm2a — O3yCOS200 — anysm2a) (—022€082a — 20,ysin20 + 04y c0820x)]
<0 (c)

(4.61)

Equation (4.61)b results from the fact that ¢ cannot be equal to zero for decohesion to initiate and hence
the necessary condition evolves from its derivative. The direction of crack propagation a. is obtained as the

solution of equation (4.61)b as
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The optimal angle « is chosen as the one that satisfies the condition in equation (4.61)c. The
corresponding angle given by the maximum hoop stress criterion in LEFM is expressed in terms of the stress

intensity factors Ky, Kyr as:

1
olFFM = 2 arctan (K, /K1 + /(K1 /Km)? + 8) (4.63)

where the sign is chosen to make the hoop stress positive. The first of equation (4.62), which is the only
choice for 8 = 1, exactly matches the angle given by the maximum hoop stress criterion (4.63). For the pure
sliding problem shown in figure 4.7, a. predicted by the equation (4.63) is 70.5°, while that by X-VCFEM

for cohesive stresses is 68.2°.

B. Length of the incremental cohesive crack advance: Upon establishing the direction of incremental cohe-

sive crack growth a., the length of cohesive zone advance (Al) should be estimated in the crack evolution
scheme. The criterion used is that the cohesive energy goes zero at the end of the new segment as shown in
figure 4.8(a). To achieve this, the cohesive energy at two points A (present crack tip) and B (close to A in
the direction of crack propagation) are evaluated by substituting the stresses in equation (4.61)a. The tip of
the cohesive zone is obtained from the linear extrapolation of this line to yield zero cohesive energy. From

figure 4.8 (a), the increment of cohesive crack length is defined as:

Pa

A== dn

|AB| (4.64)
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C. Cracks crossing the interelement boundaries and merging with each other: Crack advance from one Voronoi

cell element to the next is conducted in X-VCFEM using an algorithm depicted in figure 4.8(b). A contin-
uous tracking method is implemented to monitor if a cohesive surface has reached or gone past an element
boundary. In this method, the intersection of the crack surface and an element boundary is obtained by

solving the equation system

r—=2; Y=Y L—=Tn _ Y~—Un
= , =
Tit+1 — &g Yi+1 — Yi Tn+l — Tn Yn+1 — Yn

(4.65)

where (z;,y;) represents the tip of the cohesive crack line for the ith increment, and (z,,y,) is the position
of the nth node on the element boundary. If the intersection point is outside of the cohesive line or the
element boundary, no intersection is assumed. Once a cohesive crack has reached its intersection with the
boundary, a new node pair (ny ns) is introduced on the element boundary at this point. The node pair
belongs to the intersection of the element boundary and the cohesive crack, i.e. ning € 6Qf NT.. The
crack is subsequently advanced to the next element following the usual procedure outlined before.

Another condition that is considered in this work is the merger of multiple cracks as shown in figure 4.8(c)
for two cohesive cracks. The algorithm for crack merging is an extension of the intersection algorithm,
discussed above. At the end of every increment, all the cracks that have propagated in that increment are
recorded. Subsequently, the intersection of the last incremental segment of the cohesive crack with those of all
neighboring cracks, that belong to either the same element or neighboring elements, is checked using equation
(4.65). Once the intersection of two crack segments is ascertained, a three-node junction (mi,ma, m3), as
shown in figure 4.8(c), is inserted at the point of intersection. The contribution of the junctions nodes e.g.
(m1,m3) to the load vector in the assembled matrix equation, requires special treatment. For each of these
nodes, contributions of integrals from adjoining crack segments belonging to two different cohesive cracks,

are summed.
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4.5.2 Evaluation of stress intensity factors

The stress intensity factors and J— integral are evaluated in the post-processing phase of the computations.

From linear fracture mechanics, the relation between J— integral, stresses and stress intensity factors are

given as
1 K? K2
J= /(—a~ke-k(51- — ojjuig)nds = —L + =1L (4.66)
r 2 K3 2. ] 1] 1 7 E* E*
where E* = E (Young’s modulus) for plane stress, E* = % for plane strain, and v is the Poisson’s

ratio. In displacement based FEM [59, 26], the contour integral is converted into a domain integral to
improve the accuracy of the stress intensity factors, since the stresses are more accurate in the interior of an
element. However in X-VCFEM, stresses on the contour and the interior are equally accurate due to stress
interpolation and the contour integral can provide similar accuracy as the domain integral. A method to
extract the stress intensity factors K and Ky from the J-integral, proposed in Yau [105], is implemented
in X-VCFEM. Displacement fields are not interpolated in the interior of the Voronoi cell element, and hence

the term wus; in equation (4.66) requires a special evaluation method.

1. Compute €11, €22, and €12 at a series of points (z;,y;, ¢ = 1...N), in a small shadowed region around

the integration point (z¢,yo) in figure 4.8(d). The displacement gradient u;; is calculated from e;;.

2. For evaluating us, displacements u; and us at any point (z;,y;) are interpolated using polynomial

functions,

ur(Tiyy:) = a0+ a1m; + asy; +azxr + -+,

UQ(mi,yz') = by +biz; + bei + bgil)z2 + .- (4.67)
where ag, a1, - -+, apr and by, by, - - -, by are unknown coefficients. To constrain the rigid body motion,

coefficients are evaluated from displacement values at two points on boundaries.

3. Displacement gradient expressions, u1 1(2;, ¥:), 2,2(%i,¥s), 1,2(x:,y;) and us 1 (z;,y;) are obtained by
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taking derivatives of the expressions in equation (4.67). Strain expressions in terms of the unknown
coefficients are computed from these derivatives. At each point (z;,y;), the strains can also be computed
from the known stresses and the compliance tensor, i.e. {€} = [S][P]{8}. The unknown coefficients ao,
a1, -+, ap and b, by, - -+, by in equation (4.67) are estimated by solving a least square minimization
problem for the strains. Subsequently the displacement gradient us ; is determined at the integration

point (zo,yo)-

4.5.3 Numerical integration schemes for [H| and [G| matrices
Integration of [H] matrix:

Numerical integration over each element is conducted by the Gaussian quadrature method to form the matrix
[H] in equation (4.17). In this method, each Voronoi cell element is recursively subdivided into triangular
subdomains, on which, integration points are generated for the Gaussian quadrature. The steps involved are

discussed below.

1. For each Voronoi cell element shown in figure 4.9, the centroid O is first generated. The first set of
triangular subdomains is created by joining each of the vertices of the cell e.g. (A, B, C, D, E,

F) with the centroid O.

2. Each triangle is further subdivided into two triangles if:

Area of triangle

TOL 4.
Area of Voronoi cell element >TOLarea (4.68)

For the subdomain triangle BCO shown in figure 4.9, two triangles are created by bisecting the longest
edge BC at O’ and joining it with the opposite vertex O.These new smaller triangles are again checked
against the tolerance condition and further dissection is executed if necessary. Numerical integration

in each triangular subdomain is done using 13 Gauss points.

3. For the region containing the crack tip shown in figure 4.9, a smaller value of TOL,¢, is chosen in

comparison with other regions. This facilitates a higher density of integration points in regions of high
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stress gradients. The tolerance in an element is consequently adjusted according to the distance of the

center of the triangular subdomain from the crack tip, i.e.

TOL _ TOLmzn + (TOLZ;'%LZ - TOLZ;.ZZ) * dtri
area = area T

(4.69)

where L is a scaling parameter defined in subsection (4.3.1), dy; is the distance of the crack tip from
the subdomain and TOL™ TOL™" are assumed tolerances. In this work the tolerances are chosen

area?’ area

as TOL™® = 10% and TOL™" = 1%.

area area

. The intersection of the support of wavelet functions with the cohesive crack line call for a truncated
support. This is done by eliminating the contribution of quadrature points that lie on the other side
of crack face from the wavelet center. A visibility criterion introduced in [8] provides an easy way to
accommodate this discontinuity in the construction of truncated support. In this method, the cracks
are considered to be opaque when generating valid numerical integration regions. A ray is emitted
from the center W of a wavelet basis function in an arbitrary direction as shown in figure 4.4. If it
encounters an internal crack, the ray is terminated. All quadrature points lying in the dark shadow
region on the other side of the crack CC' are suppressed during numerical integration of this wavelet

basis.

Integration of the [G] matrices:

1 2
In equation (4.17), the matrices [G"] and [G®"] are numerically integrated over the crack surfaces and the

matrix [G®] over the element boundary. All numerical integrations on the element boundary and crack

surfaces are executed using the Gaussian quadrature method. The number of integration points N;,; on

each boundary/crack-face segment depends on the distance ds;q. between its center and the crack tip, and

is chosen from the condition

9 dgige > 0.1L
Nipt = (4.70)

16 dgige < 0.1L
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where L is the scaling parameter.

4.5.4 Invertibility of the [H] matrix

A nonsingular or invertible [H] matrix necessitates the linear independence of the columns of the [P] matrix.
For pure polynomial expansions of the stress functions, this condition is naturally attained. However when
adding the other terms, some of the terms in the branch and wavelet functions may have linear dependence
on the polynomial terms. In X-VCFEM, the rank of the [P] matrix is first determined from the diagonal

matrix resulting from a Cholesky factorization of the square matrix

[H*] = /Q [P]T[P]d (4.71)

Nearly dependent columns of [P] will result in very small pivots during Cholesky factorization. The cor-
responding branch and wavelet function terms are dropped from the stress function to prevent numerical

inaccuracies in inverting [H].

4.5.5 Elimination of element rigid body modes

X-VCFEM uses a stress-based formulation with independent representation of displacement fields on the
element and crack boundaries. In general, the nodes of the crack face are not topologically connected to
the element boundary nodes. However it is important that all nodes in the element possess the same rigid
body modes. The rigid body modes of the element boundary displacements {q°} are directly constrained
in the solution process through prescribed displacement boundary conditions. However, it is necessary to
connect these with rigid-body modes for the crack face displacement fields {qlcr} and {qzcr}. Singular value

decomposition or SVD has been discussed in [80] as an effective method for identifying and constraining
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rigid body modes at interfaces inside the Voronoi cell elements. The matrix product may be expressed as

1 9 qICT' ICT QICT
[CERCH] OV b =UNd
qCT qC'I" qc'f'

_ l[écr] _[chr]] < q2 (4.72)
qC"'

1 2
[U] and [V] are orthonormal matrices obtained by SVD of [[G”] —[G°"]|. [A] is a rectangular matrix
with nonnegative values on the diagonal. The zero or singular (very small values in numerical computations)
values in [A] corresponds to either trivial solutions or rigid body modes of the displacement solution. For

accurate displacements, elements in {§°"} corresponding to small or zero eigen-values in [A] are eliminated.

4.6 Numerical Examples

The numerical examples solved, are divided into four categories. In the first set of examples, the convergence
of X-VCFEM enriched by multi-resolution wavelet functions is demonstrated for static cracks by comparison
with theoretical predictions and results available in the literature. The second set of examples show the
effectiveness of X-VCFEM in modeling the propagation of multiple cohesive cracks. The third set of examples
is intended to investigate the effect of cohesive parameters on crack growth. The final set of examples looks
into the growth of multiple pre-existing cracks to comprehend the effect of morphology, e.g. distribution,

orientation etc..

4.6.1 Convergence tests for X-VCFEM for static cracks
Effects of translation and dilation parameters

Figure 4.10(a) shows a center cracked plate of width 2w=4c¢m and length b=12¢m with a crack length
of 2a=1.6¢cm. The plate is loaded in simple tension with a constant remote load of & = 5 M Pa. The
material parameters are: Young’s modulus £ = 1 M Pa and Poisson ratio v = 0.3. Due to problem

symmetry, only the right half of the plate is modeled with one X-VCFEM element, as shown in figure
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4.10(b). Symmetry conditions are imposed on the left edge. The crack face is modeled using 10 node-pairs
and the element boundary consists of 22 segments. The stress function used in this example consists of
the three parts discussed in section 4.3. For the polynomial function, the order of interpolation in equation
(4.18) corresponds to p, = 13 and ¢, = 13 for a total of 102 terms. For the branch function in equation
(4.22) consists of only 1 term with s, = 0 and ¢,, = 0 . The wavelet functions are changed from a lower level
to a higher level using the adaptation criterion discussed in section 4.3.4. Similar parameters are assumed
for the & and n directions, i.e., a1 = ¢1, try = tr. and by = d; in equation (4.36). The starting values of
the parameters for the lower level (m = k = 1) are: —2 <n <3, 0<1<1,and a; = ¢4 = 0.1. The
result of X-VCFEM for this problem is plotted in terms of the stress oy, along the crack face (y = 0)
as a function of the distance from the center of the crack in figure 4.11. The figure 4.11(a) corresponds to
the stresses by varying the translation parameter by, while figure 4.11(b) is for the variation of the dilation
parameter a;. From figure 4.11(a) it is evident that a smaller b; make the stress concentration at the crack
tip higher. However, very small b; < 0.001 (no translation) leads to linear dependence of the columns of
the [P] matrix generated from the wavelet basis functions, and should be avoided. Figure 4.11(b) shows
that smaller a1 results in faster convergence to higher crack tip stress concentration. However, very small
values of a; can also lead to oscillatory stresses. On the other hand, large a; values (= 0.15) shifts the
stress peak. The optimal selection of these parameters is therefore very important. This is obtained through
the multi-resolution construction of bases, discuss next. The multi-resolution wavelet bases are significantly
more effective in simulating crack problems. Table 4.7 shows the effect of the dilation transfer rate tr, = tr.
on the stress intensity factors for variation in the translation parameters b; = d;. Other parameters in the
simulation are a; = ¢; = 0.1, m,, = k, = 3, n,, = 6, and l,, = 2. The values tr, = tr. = 1 imply no dilation.
As tr, approaches 1, the different levels functions become more and more dependent on each other. From

the table, the minimum error is achieved for b; = 0.1 and tr, = tr. = 0.5 or 0.6.

Convergence with multi-resolution wavelet bases

The example in section 4.6.1 is considered again for studying the solution convergence behavior with multi-

resolution wavelet functions. The four sets of parameters represent four instances of multi-resolution stress
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function enrichment. The first case consists of only polynomial and branch functions for the stress inter-
polation, for which the details are provided in section 4.6.1. Cases 2, 3, 4, and 5, introduce different levels
of the wavelet basis functions. The wavelet parameters common to these four cases are: n,, = 6, l,, = 2,
a1 =¢ =b =d; =0.1, and tr, = tr, = 0.5. The parameters corresponding to the levels of the multi-

resolution enrichment (m,, = k) are listed in table 4.7.

The mode I stress intensity factor is calculated for all the five cases and is normalized with respect to the
analytical prediction K,.; by linear elastic fracture mechanics (LEFM), reported in [91]. The second row of
table 4.7 compares this value for the different cases. Without the wavelet bases (case 1), the solution is 16%
higher than the theoretical value. Cases 2-5 results demonstrate that the wavelet basis effectively reduces
the error with increasing resolution level (m,). The X-VCFEM generated stress oy, at y = 0 is plotted in
figure 4.12 for cases 1-4. Without the wavelet enrichment, the stress concentration at the crack tip (z = 0.8)
is completely misrepresented. The stress peaks are represented with increasing accuracy with additional
levels of multi-resolution wavelet functions. The strain energy error in equation (4.44) is also calculated for
the cases 2-5 and tabulated in table 4.7. The error rapidly decreases with increasing wavelet enrichment,
confirming the fast convergence rate of the multi-resolution algorithm. However, the stress intensity factor
K7 is calculated from a contour that is away from the crack tip. The stresses on this contour are much
more stabilized and additional wavelet bases do not affect these stresses considerably. Hence, the error in
K7 is not significantly affected by their addition. From the above convergence tests, the optimal parameters
for stress function representations in X-VCFEM are chosen to be p, = ¢, = 13, s, = t, = 0, n, = 6,
l,n=1,m,=k,=4,a1 =c¢, = by =dy =0.1 and tr, = tr. = 0.5. These are retained for all subsequent
simulations. X-VCFEM simulations of the cracked plate are further conducted for different crack lengths,
to study the effect of this length on the solution convergence. The specific dimensions in figure 4.10(a)
are 2w=2 ¢m, b=6 ¢m, while the crack length 2a is varied. The plate is loaded under remote tension of
o = 40Pa. X-VCFEM solution of K for various values of a/w are plotted in figure 4.13 and compared

with the theoretical predictions of [91]. X-VCFEM predictions match the theoretical results extremely well.

67



4.6.2 Efficiency and Accuracy of X-VCFEM

Prior to studying the effect of cohesive parameters and multi-crack distributions, the accuracy and efficiency

of X-VCFE model are validated by several numerical examples.

Comparing efficiency with ABAQUS for a simple crack propagation problem

A plate with a pre-existing edge crack under remote tension load is solved for plane strain by X-VCFEM
and ABAQUS as shown in figure 4.14(a). The material Young’s modulus E = 70,000M Pa, and Poisson
ratio » = 0.33. A bilinear cohesive zone model discussed in [53] is used to describe the crack growth and
the cohesive model parameters are o, = 5 M Pa, 6. =1 x 107 mm, 6. = 5 x 1073 mm and B = 0.707.
The entire domain is represented by a single element in X-VCFEM, consisting of 142 nodes for displacement
interpolation. The adaptive enrichment of wavelet bases is determined by the strain energy error in equation
(4.44). As shown in previous section, the optimal parameters for stress function representations in X-VCFEM
are chosen tobe p, = ¢, =13, 5, =t, =0, n, =8, lp, =1, mp =k, =4,a1 =c; = by =d; = 0.1 and
tro, = tr. = 0.5, which means that stress function interpolations consist of 102 terms of polynomial functions,
1 term in the branch function, and 128 terms in the wavelet function representation. These are retained for
all subsequent simulations. It is assumed that the crack propagates horizontally due to symmetry, and hence
the modules for determining incremental crack direction in section 4.5 is switched off for this problem. A
special UEL subroutine is developed in ABAQUS for incorporating the cohesive model at a given interfaces.
A total of 12840 4-node 2D element and 77 cohesive elements are used in ABAQUS. Figure 4.14(b) shows
the load o-vertical displacement u,, plot at point A. The two codes yield very similar results, an attestation
of X-VCFEM accuracy. However, the X-VCFEM simulation takes only 1.6 minutes on a single CPU in the
Pentium 4 cluster with 2.4Ghz Intel P4 Xeon processors, as opposed to 13.9 minutes by the ABAQUS run on
the same machine. Thus, even for this simple example, a tenfold advantage in computing speed is achieved
by X-VCFEM. It is expected that this factor will increase considerably with increasing complexity, such as

more cracks.
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A classical problem on dynamic crack propagation

This numerical example is based on Kalthoff’s well known experiment on dynamic crack propagation in a
impact loaded prenotched plate, that has been the subject of many studies [50, 51, 76]. These studies suggest
that a crack, subjected to a tension-compression load as shown in figure 4.15(a), propagates at an angle of
approximately 60° — 70° with respect to the initial notch in the plate. The present X-VCFEM does not
explicitly incorporate inertia terms, and hence a quasi-static crack propagation problem is simulated instead
of the dynamic test. The configuration in figure 4.15(a), shows that the experimental projectile motion is
replaced by the traction boundary conditions in the simulation under plane strain conditions. A small initial
crack length of a=0.02m is chosen to mitigate the effect of the constrained right hand boundary on crack
propagation. Material properties for this problem are: Young’s modulus £ = 207 GPa and Poisson ratio
v = 0.3 and cohesive zone model parameters in equation (4.11) are: o4, = 0.1 M Pa, §. = 1 x 107%m, and
B = 0. The entire domain is represented by a single element in X-VCFEM, consisting of 132 nodal degrees
of freedom. The results of the X-VCFEM simulation is shown in figure 4.15. From figure 4.15(a) the initial
crack growth angle is around 70°, which is corroborated by brittle failure experiments at very low velocities
[28]. Subsequently, the crack propagation takes place within the envelope of 60° — 70°, which is in agreement
with studies in [50, 51, 76]. The dynamic conditions, as well as boundary constraints are responsible for the
small difference between X-VCFEM results and those in [76]. Volume-averaged or macroscopic shear stress-
shear strain behavior for this problem is plotted in figure 4.15(b). The volume averaging of the local stress

and strain fields over the entire microscopic domain 2 is performed as

1
o‘r,-j(t) = ﬁ/QO','j(.'L'k,t)dV
1

&;(t) = ﬁAeij(xk’t)dV_aij(t)' (4.73)

where z;, and t are the spatial coordinates and time (cumulative increments in these problems) respectively,

and

aii(t) = 555 | (s, + lus(0n)do0 (474
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o (t) represents the effective strain field caused by the possible displacement jump at the crack. It is

calculated along the crack path T'c, with [u;(t)] denoting the displacement jump.

Crack propagation in sheared plate with a central crack

This example is based on a classical problem of a single crack propagation in a large plate with a central crack.
The plate is subjected to a far field shear load. The problem was experimentally studied by Erdogan and Sih
[28] and an optical micrograph of their cracked specimen is shown in figure 4.16(a). The specimen material in
their experiment were assumed to be homogeneous, isotropic and linearly elastic and the crack was assumed
to be brittle. A single element of dimension 10 m x 8 m in X-VCFEM is used to simulate this experiment as
shown in figure 4.16(b). The initial crack length is a=1.6 m. The material parameters are: Young’s modulus
E = 100 GPa, Poisson ratio v = 0.3 and the cohesive law parameters are: o, = 0.1 MPa, 8 = 1, and
d. = 1x10~"m. The shear stress applied on the top and bottom surfaces, is varied from 0 to 0.041 GPa with
plane stress assumptions. As shown in figure 4.16(b), the crack path predicted by X-VCFEM compares well
with the observations in [28]. Figure 4.16(c) shows the growth of the crack opening displacement components
at the right tip A. The entire computational process took 20 minutes on a single CPU in the Pentium 4

cluster with 2.4Ghz intel P4 Xeon processors.

Crack propagation in three-point bending specimen

Two numerical examples are considered for this specimen. In the first example, symmetric mode I crack
propagation in a three-point bending test, as shown in figure 4.17, is modeled. Plane stress conditions are
assumed in the simulation. This problem of cohesive crack propagation has been studied by Carpinteri [14]
using node release technique and by Moés and Belytschko [59] using the extended FEM or XFEM. The
geometrical dimensions for the specimen in figure 4.17 are b= 0.15 m,1=4b, t(specimen thickness)= b,a=0,
and d=0.001 m. The material properties are: Young’s modulus £ = 36,500 M Pa, Poisson ratio v = 0.1,
and the cohesive parameters are 0,4, = 3.19 M Pa, and 8 = 0. The X-VCFEM solution is compared
with that in [59] through the load-deflection curve of figure 4.18. The cohesive displacement parameters are

J. = 3.134796 x 1075 m and J, = 6.26959 x 10~%m for figures 4.18(a) and 4.18(b) respectively. A sharper
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snap-back is seen for the latter case. Excellent match is observed between the X-VCFEM and XFEM results
The second example shows a mixed-mode cohesive crack propagation in a three-point bend test due to an
unsymmetrically positioned initial crack. The problem, shown in figure 4.19(a), has been studied by Mariani
and Perego[56] using XFEM under plane stress conditions. The initial crack position is determined by the
offset ratio «, defined as the ratio of the distance of the initial crack from the mid-span cross-section to half
of the beam span. The material Young’s modulus E = 31370 M Pa, and Poisson ratio ¥ = 0.2. The cohesive
model parameters are 0,4, = 4.4 M Pa, 6. = 0.07719298 mm and § = 1.0. Once again, the entire domain
is represented by a single element in X-VCEFM with 154 nodal degrees of freedom. Figure 4.19(b) shows
the load-deflection curve for two values of the offset parameter, i.e. @ = 0.5 and a = 0.25. The initial elastic
response in the load P-displacement u curve is stiffer and also the peak load is higher for higher values of
a. The load-displacement response exhibits softening in the later stages of crack propagation due to the
significantly evolved crack. The path of crack propagation for the two cases are shown in figures 4.19(c) and
(d). The cracks move towards the point of applied load and align themselves perpendicular to the edge of

the specimen.Excellent agreement is obtained between the results by X-VCFEM and in [56].

4.6.3 Mesh independence of crack propagation with X-VCFEM

A panel with domain 5 ¢m x 3 ¢m containing two initial cracks is remotely loaded in tension as shown in
figure 4.20(a). The problem has been solved by Sharma et. al. [87] using the element free Galerkin meshless
method. For X-VCFEM solution, the domain is meshed into two elements with three different topologies
shown in figure 4.20. Plane stress conditions are again assumed. A total of 11 increments is used to model
the entire crack propagation process. The material parameters are: Young’s modulus £ = 207 GPa and
Poisson ratio v = 0.3 and cohesive zone parameters are: 0az = 0.1 MPa, 6, =1 x 107 %cm, and 8 = 1.
The three figures 4.20(b,c,d) show no mesh dependence of the X-VCFEM predictions and the comparison

with results in [87] is excellent.
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4.6.4 Effect of cohesive parameters on crack evolution

This example is intended to investigate the effect of cohesive parameters on crack growth. Cohesive zone
model parameters, e.g. 0mqe and J. in equation (4.11), can significantly affect the propagation and overall
behavior of a cracking material. The effects of these cohesive parameters are studied for crack propagation
in a sheared plate with a central crack subjected to a far field shear load. This classical problem was
experimentally studied by Erdogan and Sih [28] and an optical micrograph of their cracked specimen is shown
in figure 4.21(a). The specimen material in their experiment was assumed to be homogeneous, isotropic and
linearly elastic and the crack was assumed to be brittle. A single element of dimension 10 m x 8 m in X-
VCFEM is used to simulate this experiment as shown in figure 4.21(b). The initial crack length is 1g=1.6 m.
The material parameters are: Young’s modulus £ = 100 G Pa, Poisson ratio v = 0.3. Five different sets of

cohesive parameters, illustrated in figure 4.21(b) are considered for this example. These are
e A: 0,,0:=3.0 MPa, 6,=3.0 e-4m, 8 = 1.0
e B: 0,,,,=6.0 MPa, 6.=1.5 e-4dm, § =1.0
e C: 0,,0:=3.0 MPa, §.=6.0 e-4m, = 1.0
e D: 040,=6.0 MPa, §,=3.0 e-4m, § = 1.0
o E: 0/02=1.5 MPa, §,=6.0 e-4m, 8 =1.0

As shown in figure 4.21(b), all the cases correspond to the same cohesive energy. The load is applied by
controlling the opening of crack propagation through fixed values of the increment Al in equation (4.54).
Further a uniform shear load per unit length 7 is applied on the top and bottom surfaces as shown in figure
4.21(c). In each increment, the applied load is scaled by the arc-length parameter X\ of equation (4.53), to
yield an equilibriated applied load corresponding to a prescribed crack propagation length. The crack path
for all the different cohesive parameters predicted by X-VCFEM are very similar and compare well with

experimental observations in [28]. However a considerable dependence on cohesive parameters is seen in the
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shear-crack length response, demonstrated in figure 4.21(d), where the normalized crack length is defined as

L The current crack length
.=

4.
The initial crack length (4.75)

This points to the fact that the rate of propagation, and not the direction, is dependent on the parameters
for this problem. For the cases with larger peak traction cases: B and D, higher applied loads are needed
for causing similar crack growths as for cases with lower peak traction: A and C. Comparison of the results
for cases B and D, show that a smaller d. (case B) results in quicker reduction of the local cohesive traction.
This makes the overall load for the case B to increase slower than that for case D with a higher d.. The case
E consistent with the trends exhibited by the other load cases. Although, the simulation results show that
both 0,4, and §, affect the crack growth, comparison of cases A, B, C with D shows that the crack growth
is more sensitive to 04, than to §.. The results also imply that the cohesive energy, or effectively the energy
release rate G, does not alone determine the properties of crack propagation. The individual parameters,
affecting the shape of the cohesive law, play an important role in predicting the growth characteristics. These

effects are also tested for multiple crack growth in the next set of examples.

4.6.5 Propagation of multiple pre-existing cracks

The final set of examples looks into the growth of multiple pre-existing cracks to comprehend the effect of
morphology, e.g. distribution, orientation etc..

Firstly, a plate with five randomly located cracks is simulated under a tensile loading as shown in figure
4.22(a). The plate has dimensions 0.6 m x 0.4 m; material parameters: Young’s modulus E = 10° M Pa
and Poisson ratio v = 0.3; and cohesive parameters: 0,0, = 0.1 MPa, 8 =1, and §, = 1 x 10~%cm. Figure
4.22(b) shows the final positions of the cracks that have grown with the loading. The cracks propagate across
element boundaries and are attracted to each other in certain regions till they nearly merge.

A plate with 28 randomly located and oriented cracks is simulated under a tensile loading. Figures 4.23(a)
and (b) show the two microstructures with different crack distributions. For the microstructure 1, all the

cracks of equal length are oriented horizontally and their distribution is random. The microstructure 2 has
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cracks of random length and orientation. In addition, it contains a cluster of 8 cracks in a otherwise random
distribution as shown in figure 4.23(b). The plate is of dimension 0.1 m x 0.1 m, and the material parameters
are: Young’s modulus E = 10* M Pa and Poisson ratio v = 0.3. To understand the effect of cohesive
parameters on crack propagation, two different sets of cohesive parameters are considered. They are:
CP-1: 0,,,,=1.0 MPa, §,=1.0 e-5m, 8 = 0.707

CP-2: 04,=2.0 MPa, §.=0.5 e-5m, g = 0.707

A uniform tension load per unit length o is applied on the top and bottom surfaces as shown in figure
4.23(a,b). In each increment, the applied load is scaled by the arc-length parameter A of equation (4.53), to
yield an equilibriated applied load corresponding to a prescribed crack opening deformation.

Figures 4.24(a,b) and (c,d) show the contour plots of the microstructural stress oy, together with evolved
position of the cracks at the final stage of loading, for the two sets of microstructures and cohesive parameter
respectively. The growth pattern of each crack can be observed by comparing with its initial configuration
in figures 4.23(a) and (b). The cracks propagate across element boundaries, interact with each other and in
some cases, they merge. The relation of the propagation of multiple cracks to the morphology and cohesive
parameters is in general complicated. However, several observations can be made based on the results of the

simulation by this model.

e Larger stress concentrations develop at tips of cracks that are nearly perpendicular to the direction of
loading. Consequently, this subset of cracks grow more easily than others that are more aligned with
the loading direction. From figure 4.24(b) and (d), it can be seen that some cracks that are nearly

parallel to the load direction never propagate.

e Stress concentrations are higher at tips of longer cracks. The reason is stress concentrations at crack
tips come from the external load, which cannot be handled by the weak crack. Longer cracks lead to
more external load concentrating to tips. This is verified by results shown in figure 4.24(b) and (d),

where longer cracks are easier to propagate than shorter ones.

e Irrespective of the initial orientation, the evolved crack path tends to align in a direction perpendicular

to the applied load direction. This correspond to an optimal direction for releasing the cohesive energy.
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This observation is dominant, when the influence of nearby cracks on the local stress field is small.
The local stress field for this phenomenon is mainly governed by the influence of applied load on this

single crack.

e Cracks are attracted towards weak surfaces, such as other cracks or voids and prefer to propagate in
those directions. This may be attributed to the fact that the cohesive energy in the direction of these

weaker surfaces with lower (or zero) tractions is naturally lower in comparison with other directions.

e Figures 4.24(b) and (d) show that the longest crack does not necessarily evolve from a cluster. Not all
cracks in a cluster grow considerably. This is somewhat in contrast to observations made with particle
reinforced composites, where almost always clusters cause a local stress concentration. The interaction
between neighboring cracks contributes to the enhancement or mitigation of stresses, depending on
their orientations and length. This dictates their propagation, and just being in a cluster does not

guarantee significant growth.

e The different cohesive parameters show very little difference in the final configuration and hence the
propagation direction. However, the rate of crack growth varies considerably with these parameters as

seen in the crack length-macroscopic strain plot of figure 4.25

Figure 4.26 shows the macroscopic stress-strain response for the two microstructures and cohesive pa-
rameters. Even before the cracks propagate (corresponding to the change in slope), the stiffness of the
microstructure 2 is higher than that of microstructure 1 due to a higher level of effective damage caused by
crack lengths and more importantly orientations. Orientations perpendicular to the load direction causes a
larger reduction in stiffness in comparison with other directions. With additional loading, the overall damage
caused by the growth of cracks is also higher for the microstructure 1. This is seen by the lower values of the
macroscopic stress for this case. The effect of the cohesive parameters on the stress-strain response is quite
pronounced. The maximum macroscopic stress for both microstructures increases significantly for higher
values of 0,4, even though the cohesive energy is the same for the two cohesive models. This is caused by

a slowdown in the growth rate of the cracks with overall deformation.
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4.7 Concluding Remarks

The extended Voronoi cell finite element model is developed in this chapter to predict initiation and growth
of damage by crack propagation in brittle matrix. The cracks are modeled by a linear cohesive zone model
and their incremental directions and growth lengths are determined in terms of the cohesive energy near the
crack tip. Important enhancements are made to the element to allow stress discontinuities across the cohesive
crack and to accurately depict the crack tip stress concentrations. These features are accommodated through
the incorporation of (a) branch functions in conjunction with level set methods across crack contours, and
(b) adaptive multi-resolution wavelet functions in the vicinity of the crack tip. Several problems are solved
and compared with existing solutions in the literature for validation of the X-VCFEM algorithms, both with
respect to macroscopic (load-deformation behavior) and microscopic (crack path). The X-VCFEM results
show excellent accuracy in their comparison with analytical and other numerical solutions. Also compari-
son with ABAQUS shows the efficiency of X-VCFEM. Numerical simulations are conducted with different
Omaz and &, to understand the effect of cohesive parameters on the crack propagation. It’s observed that in
addition to the total cohesive energy, the individual parameters have effects on crack growth. The effect of
geometrical information of multiple pre-existing cracks, including the lengths, positions and orientations of
cracks, on their propagation is studied by simulating a plate with 28 randomly located and oriented cracks.
Simulation results show that the crack with a longer length and nearly perpendicular to load direction is
easier to propagation than other cracks. Cracks propagation direction is dependent on the local stress field,
which is managed by both the external load and nearby material phases, such as other cracks in a cluster.
This research reveals the significance of analyzing large regions of the microstructure and proves the effec-
tiveness of the X-VCFEM. The simulation results based on X-VCFEM could also provide positive feedback

for design modification.
Based on the study on interfacial debonding and cohesive matrix cracking in composites, the interaction

of the two damage phenomena is studied in the next chapter, where the X-VCFEM is improved and a

criterion for assessing the direction of damage development is proposed.
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trg 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4
b1 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
Ki/K.; | 1.019 | 1.014 | 1.040 | 1.017 | 1.014 | 1.027 | 1.020 | 1.020 | 1.035

Table 4.1: Normalized stress intensity factors (Kj/K,.s) for different values of tr, and by in the multi-
resolution wavelet representation.

Case 1l | Case2 | Case3 | Case4 | Case b

My, = kn, 0 1 2 3 4
KI/KTef 1.1642 | 1.0361 1.0208 | 1.0062 | 1.0020
ASE 96.45% | 45.91% | 7.06% | 3.01%

Table 4.2: Errors with varying enrichment order of multi-resolution wavelet functions for the different cases.
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Figure 4.1: (a) A mesh of Voronoi cell elements, each containing a single pre-existing crack, (b) a typical

Voronoi cell element showing different topological features and loads.
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Figure 4.2: Normal and tangential traction-separation behavior for the linear cohesive zone model.
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Figure 4.3: (a) A schematic diagram of a crack surface showing parameters related to the distance functions;
(b) depiction of the branched stress function 72" near a crack for s = 0, ¢t = 0.
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Figure 4.4: Distribution of multi-resolution wavelet bases around a crack tip: (a) Crosses (x) refer to the
location of the origin of the basis vectors at a lower level corresponding to dilation parameters (tr, and tr.)
and (b) adaptively upgraded to higher level wavelet bases with the addition of the next level of bases at
locations indicated by the (O).
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Figure 4.8: Algorithms for incremental propagation of cohesive cracks: (a) for direction and incremental
length, (b) a cohesive crack going through the inter-element boundary, (c) for merger with other cracks and
(d) for evaluation of J— integral.
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Figure 4.9: Subdivision of the Voronoi cell element for Gaussian quadrature, with a higher density of
integration points near the crack tip.
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Figure 4.10: (a) A center cracked plate loaded in tension, (b) a single X-VCFEM element with prescribed
boundary conditions
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Figure 4.11: X-VCFEM generated stress o,y at y = 0 for the cracked plate, to examine the effect of

parameters in the wavelet basis: (a) dilation parameters and (b) translation parameters.
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Figure 4.14: (a) A plate with an edge crack under remote tension load, (b) comparison of load-deformation
curves by X-VCFEM and ABAQUS.
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Figure 4.15: (a) Prediction of the crack path by X-VCFEM for the Kalthoff experiment, (b) the macroscopic
stress-strain response.
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Figure 4.16: (a) Optical micrograph showing the path of cracking in a plate with a central crack sub-
jected to far-field shear [28], (b) corresponding crack crack path generated by X-VCFEM, (c) crack opening
displacement at the tip A.
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Figure 4.18: Comparison of normalized load-deflection curves for the three-point bending beam: (a) d.
3.134796 x 10~° m and (b) J. = 6.26959 x 106 m.
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Figure 4.19: (a) A three-point bending specimen with an unsymmetric initial crack, (b) comparison of
load-deflection curves from X-VCFEM and literature [56] , (¢) and (d) comparison of the crack paths by
X-VCFEM with that in [56] for & = 0.25 and a = 0.5, respectively.
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Figure 4.20: A plate with two cracks in arbitrary locations modeled by X-VCFEM using elements of different
topologies located cracks, (b,c and d) show crack path at the end of the loading for the different elements
and also a comparison with [87].
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Figure 4.21: (a) Optical micrograph showing the path of cracking in a plate with a central crack subjected to
far-field shear [28], (b) 5 different sets of cohesive parameters for X-VCFEM simulations, (c) corresponding
crack path generated by X-VCFEM, (d) comparison of the growth of cracks for different cases.
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Cracks coming together

Figure 4.22: (a) X-VCFEM mesh for a plate with five randomly located cracks, (b) crack paths at the end
of loading
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Figure 4.23: Crack propagation in two square regions containing 28 cracks by X-VCFEM: (a) domain with
horizontal cracks of equal length and random distribution, (b) domain with random orientation, length and
distribution of cracks but containing a cluster.
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Figure 4.24: Crack propagation in two square regions containing 28 cracks by X-VCFEM: (a,b) contour plots
of o, (MPa) with cohesive parameters CP-1 for the domains in figure 23 (a) and (b), (c,d) contour plots of
oyy (MPa) with cohesive parameters CP-2 for the domains in figure 23 (a) and (b)
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Figure 4.25: Comparison of the growth of crack A in microstructure 1 with different cohesive parameters.
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rameters.
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Chapter 5

Extended Voronoi Cell Finite Element
for Modeling Interfacial Debonding
with Matrix Cohesive Cracking in

Fiber Reinforced Composites

5.1 Introduction

Interfacial debonding and cohesive cracks propagation in brittle matrix are two important damage phenomena
in fiber-matrix composites. Experiments show that the two damage phenomena appear in the same material,
where the failure often starts from the interface between fiber and matrix, and is subsequently advanced into
matrix. Researches regarding a crack meeting a bimaterial interface to either deflect along the interface or
penetrate into the next layer were made in [2, 41, 42, 55], where the criterion of deflection versus penetration
was established based on the energy release rate and fracture energy. However, the present research is aimed

at only elastic cases, which requires that the fracture process zone at the crack tip is small compared to

103



the size of the crack and the size of the specimen. In chapter 4, cohesive zone models are introduced into
VCFEM to study damage of interface and matrix, where the stress field in composites are described by a
set of specifical functions accurately. And the effect of cohesive parameters and morphological distributions
are studied as important factors to the damage process. All work in the two chapters are theoretical and
computational preparation for solving interfacial debonding problems coupled with matrix cracking.

In this chapter, a criterion based on cohesive zone models is proposed for assessing the direction of damage
development. The improved X-VCFEM is developed for modeling both the growth of interfacial debonding
and the propagation of multiple cohesive cracks in the brittle matrix of fiber-reinforced composites. The
mechanics theories and numerical algorithm in previous chapters are organized as an organic whole, not just
a simple superposition. It begins with the X-VCFEM formulation and numerical implementation, followed
by the numerical example showing the effectiveness of this model and the interaction of interface and crack

propagation.

5.2 Extended Voronoi cell FEM formulation for composites with

interfacial debonding and matrix cracking

The Voronoi cell finite element mesh for a microstructure with both debonded interfaces and cohesive cracks
is shown in figure 5.1(a), where the region is divided into an unstructured finite element mesh of arbitrary
Voronoi cells. A typical Voronoi cell element Q. is shown in figure 5.1 (b). Each VC element is composed
of the matrix phase (Q,,), the inclusion phase(f2.), the interface (£2;,), and cracks (), such that Q. =
QU Qe U Qin U Qer, where interface and cracks are consider as zero thickness regions. The element outer
boundary consists of the prescribed displacement boundary (T,.,), prescribed traction boundary (Ty,,,) and
the inter-element boundary (I',), soi.e. 9Q¢ = Tym U Ttm U 'm- Compatible displacement conditions apply
on 09Q,. 090¢ has an outward normal n° (=n™), while n® is the outward normal to 9€,. In order to describe
debonding with progressing deformation through decohesion, the interface is lined with a set of node-pairs
with nodes belonging to the matrix interface (0027") and inclusion interface (0€2¢) respectively. The traction

t°°" between node-pairs on the crack surface are modeled by the cohesive zone traction-separation law. The
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behaviors of cohesive cracks in the brittle matrix are described by a similar method, where nodes in node-pairs
1 2
are arranged at different sides of a crack (T and T',.). In the incremental assumed stress hybrid X-VCFEM

formulation, the complementary energy functional for each element is expressed in terms of increments of

stress and displacement fields as:

IIe(o,Ao,u,Au) = —/ AB(a’m,Aam)dQ—/ AB(c¢, Ac©)d)
Qm Qe
™ Ag™dQ —/ €’ : Agd)
Qe

o™+ Ac™)-n°- (u® + Au®)dof

[ -
J

(
Q.
(

_ /tm

- / (6™ 4+ Ao™) - n- (u™ + Au™)doQ
Q

t + At) - (0™ + Au™)dl’

—

D

°3

+ / (0° + Ac®) - n° - (u° + Au)doQ
Qs
1 1
- / . (@™ 4+ Ac™) -0 - (u” + Auc")dT,,
I

r
2 2

a /2 (6™ 4+ Aog™) -n" - (" + Au")dl,,

T4+ Au™ —u®—Au®)
- / / T™ - d(u™ — u®)doQ
aam /oqe J (um —uc)

2

o At Zr Aude . ,
- / / T d(u®" — u")dT,, (5.1)
Ten Ju

er _uz:r

Here B is the complementary energy density and the superscripts m and ¢ correspond to variables asso-
ciated with the matrix and inclusion phases. 6™ and o¢ are the equilibrated stress fields, €™ and €° the
corresponding strain fields in different phases of each Voronoi element. Also, u®, u™, u®, ulcr and u2" are
the kinematically admissible displacement fields on 8%2., OQ, 09, F and Fcr respectively. The prefix A
corresponds to increments. The term in the box in equation (5.1) provide the work done by the interfacial
tractions T™ = T/*n™ + T{"t™ due to interfacial separation (u™ — u®), where T* and T} are the normal
and tangential components that are described by cohesive laws at the interface. Similarly, the last term
provide the work done by the cohesive tractions T = T;;™n" + T{"t°" due to displacement separation

1

2
(u°" — u°") along the crack, where T" and Tf" are the normal and tangential components of the cohesive
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force. The total energy for the entire composite domain is obtained by adding the energy functionals for N

elements as

I=> 1 (5.2)

5.2.1 General element assumptions and weak form

In the absence of body forces, two dimensional stress fields satisfying equilibrium relations can be generated
from the Airy’s stress function ®(z,y). In the incremental formulation, stress increments in matrix and

inclusion are obtained from derivatives of the stress functions A®™(x,y) and A®(z,y) as:

Ao _2_32(%‘1’7"
Aom | = | Zaen | =[P"(z,y){AB™},
8%A8™
Aoz ~ iy
Ao€ 2AP°
O.ZZ' 8y2
Aot | = | 2 | =[Pz, y){A8} (5.3)
Adgy ~ Sk

where {AS™} and {AB°} are the column of unknown stress increment coefficients. Convergence properties
and efficiency of X-VCFEM depend on the choice of ®™. These functions should adequately account for the
geometry and location of the heterogeneity in the element, so stress functions for matrix are decomposed

into (a) a purely polynomial function @™, = (b) a reciprocal function ®7 ., (c) a branch function 7

poly> rec» branch
and (d) wavelet functions @7, (™ = @7, + 7. + @7, + B1,,)- The selection of stress functions

are discussed in chapter 4 detailed. Inclusion stress functions are admitted as polynomial function @700y
(@ = ngly). Compatible displacement fields satisfying inter-element continuity on the element boundary

90F and intra-element continuity on both the interface 9Q7/9¢ and the crack face T, are generated by
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interpolation of nodal displacements as:

{Au'} = [L){Aq°} on 09,
{Au™} = LA™} on 007
{Aut} = [L{Aq} on 99

{Au} = [L"H{AGT} on Lo,

(AwT} = [L{AG} on To (5.4)

The interpolation matrices [L¢], [L™], [L¢], [LICT], [L2”] for the nodal displacements on the respective bound-
aries are constructed using standard linear or hierarchical shape functions. Since nodes on the inter-
face and crack surfaces are always belonging to some node-pair, the interpolation matrices are chosen as
[L7] = L] and [L77) = L7,

Substituting the interpolations of stress and displacement fields from equations (5.3) and (5.4) into equation

(5.1) results in the matrix form of the element complimentary energy

L = (8™ +AF™)THP){B™ + AB™) — (8% + A8<)T[H) {8 + AF7)
+ (8™ +AB™}[G]{a" + Aq”} — {B™ + AB™}[G]" {q" + Aq™}
£ {80+ ABYTIGI (a + Ad’) + 8™ + AF™TIG}{d + Ag”)
(8™ + AB™YTIGIa" + Ad7) - {E}7{a" + Adc)

T4+ Au™ —u—Au®)
- / / T™ - d(u™ — u®)doQ
aam /oqe J(um —ue)

uc7‘+Auc7‘7uc7‘7Auc7‘ 1 9

- / / T - d(u’ — u®")dl,, (5.5)
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where

= [ s, = [ PSP,

@) = [ P, (€= [ P e,

) = [ PwIme0. 6= [, P

€7 = [ P (8= [ L A, (56)

Construction of appropriate stress functions with optimally high resolution is necessary for accurately de-

picting high stress gradients near the crack tip.

5.2.2 Solution Method

Crack growth in multiply cracked materials is solved using an incremental approach, where a set of elemental
and global equations are solved in each increment for stresses and displacements.

1. Local equations for each element are obtained by setting the variation of equation (5.5) with respect
to the stress coefficients AB™ and AB€ to zero. This results in the weak form of the element kinematic

relations

m 0] | ) measm |
[0] [Hf] B¢+ AB°
q€ +Aq€
1 2 q™ + Aq™
[G]] —[G™] [0] [GT] —[G™]
S g+ Aq¢ ¢ (5.7)

[o] [o] [G] [0] [0] 1 1
qcr + Aqm"
\ q207' + Aq2c7"

or in a condensed form

[H]e{8 + AB}. = [G]e{a + Aq}. (5.8)
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Since equation (5.8) is linear, the stress coefficients can be directly expressed in terms of the nodal displace-
ments, provided the element [H]. matrix is invertible.

2. Subsequently, the weak forms of the global traction continuity conditions are solved by setting the varia-
tion of the total domain energy functional with respect to the generalized displacement components to zero.

This results in the weak form of the traction reciprocity conditions

o>

L 5 T foon

N Ge —[gm 0 Ger —[@er m AB™ N
G —em o e e | s | ] (59)

e=t | [0] [0] [G° [o0] [0] B+ Ap© e=t

‘ ‘ feon

_f'cr

coh

or in a condensed form:

Z[G]Z{JB + Aﬂ}e = Z{Tezt}e (510)

The forces at the interface and crack surface are expressed in terms based on the cohesive energy as

(0™ +Au™ —u—Au)
/ T™ - d(u™ — u°) | doQ
(

,mh _ / 0
co
aam /90g dAq™

um_uc)
= / L™ T{T™(u™ + Au™ — u° — Au®)}doQ (5.11)
aam /908
1 1 2 2
B P W AR _ut_ Au” 1 )
o = / - /1 ) T . d(u®" — u®") | dl,
Ter aAqCT‘ uc” —uc”"
1 1 1 2 2
— — / [LC’I‘]T{TC’I‘(uCT _+_ AuCT _ uC’I" _ AuC'I")}dFCT (5‘12)
FC”'
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Combining equations (5.8) and (5.10) and eliminating the stress coefficients {3+ AB}., results in the equation

for solving the generalized displacements

> H{IGITH Gl Ha + Aqt = > {Teat}e (5.13)

Equation (5.13) is a nonlinear matrix equation system due to the cohesive laws. Consequently, a Newton-
Raphson iterative solver is invoked to solve for the increments of nodal displacements. The linearized form

of equation (5.13) for the j-th iteration is

Al a{Tewt}e i T -1 ’ Jj_
{ZW_;{[G] [H] [G]}e} {da}’ =

e=1
N N J
{Z{Tm}e ~ S {1 H[G]}e{a + Aq}} (5.14)
e=1 e=1
which, in a condensed form is

[KVdq’ = {R%,,} — {R{,,} (5.15)

Many numerical examples in Chapter 4 prove that only a Newton-Raphson iterative solver cannot obtain
the entire failure solution for the problems with damage, especially when a snap-back appears in the load-
deformation curve.

According to the arc-length method proposed in [19, 20, 84], an unknown loading parameter (A + d}) is

introduced to govern the load increments. Equation (5.15) is modified with this loading parameter as
[KeYdd’ = (N + dN){RE,,} — (R, (5.16)

where both d\ and dq’ are unknowns, and d) can be either positive or negative. The orthogonality

condition is chosen to be the constraint equation required by the additional unknown d\.
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5.2.3 Stability conditions

Following the stability conditions derived for displacement-based and stress-based finite element approxima-
tions in [4, 12, 104], the stability conditions of the stress-displacement field variational problem in X-VCFEM
are stated in section 4.2.3. They are positive definite [H™] and [H¢], unique stress interpolation functions,
and non-zero stress parameters for all non-rigid body displacement fields. The two conditions can be sat-
isfied by implementing numerical methods in section 4.5. And the third one is accomplished by choosing

ngm >ng +ng' +ng” *2 — 3 and nge >ng — 3.

5.3 Aspects of Numerical Implementation

5.3.1 Adaptive criteria for cohesive crack growth

A. The criterion for the incremental cohesive crack advance into matrix:

The static deflection/penetration behavior at an interface has been the subject of numerical research efforts
in the past years and many significant results for various kinds of materials have been obtained([2, 41,
42, 55]). The fracture toughness ratio of the interface and the matrix material has been identified as the
most important parameter governing the crack deflection/penetration phenomenon. Predicting crack growth
requires to calculate the energy release rate, GG, and a knowledge of the surface fracture energy, G.. In this
chapter, we denote by G* and G¢ the energy release rate and the critical energy release rate for the case of
growth along interfaces, and by G™ and G7* the corresponding quantities for penetration into matrix.

As seen in previous results, stress concentration always appears in the matrices around fibers, which results
in cohesive interfaces between fiber and matrix becoming weak and even debonded. Simultaneously, damage
at the interface results in larger concentrated stress fields in matrix. Once the stress in matrix reaches some
critical value, the material at this matrix point might become softening and damage propagates into matrix
from the interface. All points with critical stresses are regarded as the candidate damage position, where the
criterion is necessary for selecting the crack growth direction, along the interface or branching into matrix.
The candidate positions are usually chosen from the Gaussian integration points on the interface. In the

program, 18 Gaussian integration points are distributed between any two consecutive nodes at the interface.
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At the candidate points, the criterion for assessing the crack penetrating into matrix is defined as
G™/G' > G™/G" (5.17)

In this thesis, the energy release rate is calculated based on cohesive zone models, which are shown in figure
5.2. The bilinear model in figure 5.2 (a) is for describing the damage at interface, and the linear model in
figure 5.2 (b) is for the matrix cracking. The areas of the shadow regions express the current energy release
rates G* and G™. According to the relation between the cohesive energy ¢ for complete decohesion and the

critical energy release rate G, in equation (4.55), the critical release rates for interface and matrix are

Gi — lai

Cc 2 max

. 1
5 and GM=Zg™ ™ (5.18)

mazx
2

In order to obtain the energy release rate G™, the effective cohesive traction ¢ is calculated according to
stresses (045, 0yy and o4,) at every candidate point. Recalling equations (4.58-4.62) in Chapter 4, effective

cohesive traction t(a,), the cohesive energy ¢(a.) and the energy release rate G™ are obtained

t(a) =
. 9 . 2 \9 o 1 . 1 . )
(0zg8in“a — ogysin2a + oyycos?a)? + 3 (—Eams1n2a + 0gycos2a + §Uyys1n2a)
(5.19)
m 621 m 2 2
Gm=lae) = S (om’ — tar)) (5:20)
where a. is the angle maximizing the cohesive energy.
The current energy release rates for interface, G%, is obtained
ol .01/8, 4 < O
G = (5.21)
o . 5i_6)2
-G sz,
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According to equations (5.18, 5.20, 5.21) and inequality (5.17), the damage propagation directions are
determined at the candidate points.

B. Direction and length of the incremental cohesive crack advance:

Recalling results in chapter 4, the direction of matrix cracking «. is obtained at the damage onset points as

Qe =

—Oaztoyyt Opg—0 24402
arctan < vy ( vy) zy

202y

(5.22)

arctan (2(ﬁm_l)amyi\/(4ﬁ'"4—8ﬁ’"2+4)<f§y—(45'"4—4ﬁm2+2)amayy—(2ﬁm2—1)(a§m+a§y) )

2872000 —00at0yy

The sign in equation (5.22) is chosen as the one that maximizes the cohesive energy ¢. by satisfying the
condition in equation (4.61) c.
Upon establishing the direction of incremental cohesive crack growth a., the length of cohesive zone advance

(Al) should be estimated in the crack evolution scheme according to the same algorithm shown in chapter

4 as:

7 Pa

where B is a point close to A in the direction of crack propagation.

5.3.2 Generation of |G

Once damage is driven from interface into matrix, two node-pairs (mg, n1) and (m2, nz2), shown in figure
5.3, are added at the interface, where nodes m; and ms are at the matrix side and nodes n; and ns are
at the inclusion side. The separation between m; and ms describes the displacement discontinuity at the
crack surface. Since crack doesn’t propagates into the inclusion, the node-pair (n;, ny) merges by sharing
the same displacement. This can be implemented at assembling matrix [G€]. In matrix [G€], the elements in

column DOF,» are added to the corresponding elements in column DOF;,;, and the entire column DOF;,5
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is assigned zero. The process is shown in equation (5.24) as

DOF,, DOFy2
* #
* # =>
* #
nge Xnge
DOF,; DOFp;
x+F 0
x+H#H . 0 (5.24)
x+# 0
Nge Xnge

5.4 Numerical Example

An example with a square microstructure containing a single circular fiber with a debonding interface is
considered to check the effectiveness of X-VCFEM and study the interaction between the interface and
matrix cohesive cracking. The geometrical dimensions for the specimen in figure 5.4(a) are a= 20 mm,
r= 5 mm. The material parameters for matrix and fiber are: Young’s modulus E,, = 72 GPa, E; =
450 GPa, and Poisson ratio v,, = 0.32, vy = 0.17, where subscript (-),, and (-); denote matrix and
fiber respectively. The interface uses the bilinear cohesive zone model with the properties o, ,. = 0.04 G Pa,
d. = 0.001mm, §¢ = 0.02mm, B* = 0.707. The linear cohesive zone model is used to describe matrix cracking
with parameters: o2, = 0.05 GPa, 07" = 0.002mm, and ™ = 1. The cohesive parameters are chosen

max

to make o™, > ob . so that the damage starts from interface instead of matrix. Under plane strain

magz
conditions, the displacement boundary conditions are shown in figure 5.4(a). The whole microstructure is
modeled with one X-VCFEM element, consisting of 16 nodes on the cell boundary and 20 node pairs on the
interface for displacement interpolation. Before damage propagates into matrix, the stress functions in this

example consist of 102 terms of polynomial functions and 45 terms of reciprocal functions. After the cracks

advance into matrix, one branch function and 16 wavelet functions are added into the stress interpolation for
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each crack. Figures 5.4(b) shows the contour plots of the microstructural stress oy, together with evolved
position of the cracks at the final stage of loading. The growth pattern of each crack can be observed by
comparing with its initial configuration in figures 5.4(a), where there is no matrix cracks.

The relation of the propagation of multiple cracks to the interface debonding is in general complicated.

However, several observations can be made based on the results of the simulation by this model.

e As shown in figures 5.4(b), the lower stress at point A implies that interface there becomes weak even
debonded, which results in the load can not be transfered into the fiber at this position effectively. The
positions with concentrated stress bifurcate from point A and move to left and right sides respectively
along the interface, which might drive the damage into matrix from the interface. The same thing

happens at the bottom point of the circular fiber.

e Due to symmetry, four cracks propagate into matrix from the interface. Largest stresses appear at tips
of cracks and the stress in fiber is released. In this example, since cracks result in larger concentrated
stress than interfaces, cracks propagation in matrix becomes the key damage phenomenon in following

failure process.

e The evolved crack path tends to align in a direction perpendicular to the applied load direction, which

agrees with the observation in chapter 4.

5.5 Concluding Remarks

The extended Voronoi cell finite element model is improved in this chapter to predict the damage advanc-
ing into matrix and study the interaction between interfacial debonding and matrix cracking. Polynomial
functions, reciprocal functions, branch functions and wavelet functions are made to the element stress in-
terpolations to accurately depict the stress discontinuities and concentrations at interfaces and cracks. The
damage in interface and matrix are modeled by cohesive models. A criterion for assessing the crack pen-
etrating into matrix is proposed, which is based on the energy release rate and cohesive energy. A square
specimen containing a single circular fiber with a debonding interface is considered to check the effectiveness

of X-VCFEM and the criterion.
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The damage analysis in fiber-reinforced composites is in general complicated. X-VCFEM is easy to be ex-
tended to study effects of material properties and geometric characterization, such as clustering, alignment,
fiber shape, relative sizes etc., which are critical to the failure process in the microstructure. This will be

explored in the future work.
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Figure 5.1: (a) Voronoi mesh for composite microstructure with interface debonding and matrix cracking,
(b) a typical Voronoi cell element with interface and crack.
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Figure 5.2: Cohesive zone models for calculating energy release rates: (a) the bilinear law for interface
debonding and (b) the linear law for matrix cracking.
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Figure 5.3: Node pairs (n1, m1) and (n2, ms) for describing damage advancing into matrix.
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Figure 5.4: (a) A square microstructure containing a single circular fiber, (b) contour plot for o,, (GPa)
with four cohesive cracks propagated from the interface.
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Chapter 6

Concurrent Multi-level Model for
Damage Evolution in
Microstructurally Debonding

Composites

6.1 Introduction

Analysis of composite materials with microstructural heterogeneities is conventionally done with macroscopic
properties obtained by homogenizing response functions in the representative volume element (RVE) from
microscopic analyses at smaller length scales. While these “bottom-up” homogenization models are efficient
and can reasonably predict macroscopic or averaged behavior, such as stiffness or strength, they have limited
predictive capabilities with problems involving localization, failure or instability. Assumptions of macroscopic
uniformity and RVE periodicity, the two basic requirements of homogenization, break down under these

circumstances. The uniformity assumption ceases to hold in critical regions of high local solution gradients,
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such as near free edges, interfaces, material discontinuities or evolving damage. RVE periodicity, on the other
hand, is unrealistic for non-uniform microstructures, e.g. in the presence of clustering of heterogeneities or
microscopic damage. Even with a uniform phase distribution in the microstructure, the evolution of localized
stresses, strains or damage path can violate the periodicity conditions. Problems like this have been effectively
tackled by multi-scale modeling methods e.g. in [72, 29, 44, 67, 66, 81, 74, 73, 94, 108, 92]. Multi-scale
analyses methods can be broadly classified into two classes. The first is known as ”hierarchical models”
[29, 44, 94, 92] in which information is passed from lower to higher scales, usually in the form of material
properties. The hierarchical homogenization models assume periodic representative volume elements (RVE)
in the microstructure and uniformity of macroscopic field variables. The second class, known as “concurrent
methods” [67, 66, 82, 74, 73, 108], implement sub-structuring and simultaneously solve different models at
regions with different resolutions or scales.

The two-way coupling of scales enabled in the concurrent methods is suitable for problems involving
localization, damage and failure. Macroscopic analysis, using bottom-up homogenization in regions of rel-
atively benign deformation, enhances the efficiency of the computational analysis. As a matter of fact, it
would be impossible to analyze large structural regions without the advantage of a continuum model based
macroscopic analysis. On the other hand, the top-down localization process cascading down to the mi-
crostructure in critical regions of localized damage or instability for pure microscopic analysis, is necessary
for accurately predicting the damage path. These microscopic computations, depicting the real microstruc-
ture are often complex and computationally prohibitive. Hence, a concurrent setting makes such analyses
feasible, provided the ”zoom-in” regions are kept to a minimum. The adaptive multi-level models, promoted
in [67, 66, 82, 74, 73, 108], are attempts to achieve this objective, with the adaptivity motivated from phys-
ical and mathematical perspectives. However, there is a paucity of such studies in the literature involving
material nonlinearity and evolving microstructural damage. In their previous studies, Ghosh and coworkers
have proposed adaptive multi-level analysis using the microstructural Voronoi cell FEM model for modeling
elastic-plastic composites with particle cracking and porosities in [81], and for elastic composites with free
edges and stress singularities in [74, 73].

In a preceding paper [75], the authors have derived and computationally modeled an anisotropic con-
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tinuum damage mechanics (CDM) model for unidirectional fiber-reinforced composites undergoing interfa-
cial debonding from by using homogenization theory. The CDM model homogenizes the damage incurred
through initiation and growth of interfacial debonding in a microstructural RVE with nonuniform distribu-
tion of fibers. Additionally, arbitrary loading conditions are also effectively handled by this model. The
present paper uses this CDM model of [75] in an adaptive concurrent multi-level computational model to
analyze multi-scale evolution of damage. Damage by fiber-matrix interface debonding, is explicitly modeled
over extended microstructural regions at critical locations [35, 53]. The adaptive model addresses issues of
efficiency and accuracy through considerations of physically-based modeling errors.

The adaptive multi-level model consists of three levels of hierarchy viz. level-0, level-1 and level-2), which
evolve in sequence. The continuum damage model developed in [75] is used for level-0 computations. The
level-1 domain is used as a ‘swing region’ to establish criteria for switching from macroscopic to microscopic
calculations. Physical criteria involving variables at the macroscopic and microstructural RVE levels, trigger
switching from pure macroscopic to pure microscopic calculations, i.e. the level — 0 — level — 1 — level — 2.
A transition layer is placed between the level — 1 and microscopic level — 2 domains for smooth transition
from one scale to the next. All computations in the composite microstructure with explicit representations
of the fiber and matrix phases are done with the Voronoi cell finite element model or VCFEM (35, 53].
In VCFEM, debonding at the fiber-matrix interface is achieved by a layer of cohesive springs [68]. Two
numerical examples are solved in this paper to examine the effectiveness of the multi-level computational
model in multi-scale damage analysis. The first example considers a small region of a fiber matrix composite
microstructure for comparison with an explicit micromechanics model. The second set of problems models

a double lap bonded composite joint for demonstrating its capability in handling large structural problems.

6.2 Levels in the Multi-scale Computational Model

The multi-phase composite computational domain .; is adaptively decomposed into a set of non-intersecting
open subdomains, belonging to levels-0, -1 and -2 with different algorithmic treatments, i.e. Qper =

Qo U U2 U Q. The different levels of computational hierarchy, in the order of sequence of emer-
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gence, are depicted in figure (6.1) and discussed briefly here.

Micro Crack

LEVEL 2
Transition

LEVEL 2

Element

LEVEL 1

periodic boundaries

(a) (b)

Figure 6.1: Schematic of the two-way coupled concurrent multi-level model: (a) a representative volume
element (RVE) for a non-uniformly distributed composite microstructure generated by tessellating the lo-
cal microstructure, (b) the top-down multi-level model showing components of concurrent coupling, viz.
continuum level-0, level-1 of asymptotic homogenization and level-2 of micromechanical analysis.

6.2.1 Computational Subdomain Level-0 (£ )

This level corresponds to regions where continuum constitutive laws can be used in macroscopic analysis.
Macroscopic field variables like stresses and strains in ;9 are relatively uniform and there is no strong non-
periodicity in the microstructure. Hence, microscopic ‘statistical’ periodicity in the RVE is assumed to be
valid in this level. Scale effects are negligible and it is possible to derive effective constitutive relations by
volume averaging the RVE response with imposed periodicity conditions, in the limit that the RVE tends to
zero volume. This is generally the starting level in the multi-scale analysis model, as long as RVE’s can be
identified for the computational domain. Macroscopic analysis with the continuum constitutive models in

level-0, reduce the computing effort by several orders of magnitude in comparison with models that require
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complete microscopic analysis .

For undamaged microstructures with linear elastic or elastic-plastic phases, homogenized anisotropic
constitutive laws have been developed by the authors in [82, 34]. In the case of microstructures with randomly
evolving microcracks causing diffused damage, the homogenized material behavior is best represented by a
continuum damage mechanics (CDM) law. An anisotropic CDM model with a fourth order damage tensor
has been developed from rigorous micromechanical analyses in [75]. The general form of CDM models
[49] introduce a fictitious effective stress f]z-j acting on an effective resisting area (A), which is caused by
reduction of the original resisting area A due to material degradation from the presence of microcracks and
stress concentration in the vicinity of cracks. In [75], the effective stress 3;; is related to the actual Cauchy

stress X;; through the fourth order damage effect tensor M;jx; as

Yij = Mijr(D)Xg (6.1)

where M;;r; is a function of the fourth order damage tensor D(= D;jie; ® ej Q@ ex @ e1). The hypothesis of
equivalent elastic energy is used to evaluate M;j; and hence establish a relation between the damaged and
undamaged stiffnesses [18, 15, 106]. Equivalence is established by equating the elastic energy in the damaged

state to that in a hypothetical undamaged state as

1 _ ~ 1- .

W(%,D) = izij(Eijkl(D)) Bu = W(X,0) = §Eij(Ez9jkl) S (6.2)
where ¥ = ¥;;e; ®e;, Ez"] w1 is the elastic stiffness tensor in the undamaged state and Ejjz; (D) is the stiffness
in a damaged state. From equations 6.1 and 6.2, the relation between the damaged and undamaged stiffnesses
is established as

Eijkl = (Mpqij)_lEo (Mrskl)_l (63)

pqrs

With an appropriate assumption of a function for M;;x;, equation (6.3) can be used to formulate a damage

evolution model using micromechanics and homogenization. In [75], a damage evolution surface is introduced
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to delineate the interface between damaged and undamaged domains in the strain e-space as

1
F = ieijPz-jklekl - m(aWd) =0 (6.4)

Here Wy corresponds to the dissipation of the strain energy density due to stiffness degradation for constant
strain without an external work supply. Also called the degrading dissipation energy (see [43]), it is an
internal variable denoting the current state of damage, and is expressed as:

1
Wd=/§e,~jekldE,~jkl (6.5)

Pij1y is a symmetric negative-definite fourth order tensor that will be expressed as a function of the strain
tensor e;;, « is a scaling parameter and & is a function of W,. Assuming associativity rule in the stiffness

space, the evolution of the fourth order secant stiffness is obtained as

. . oF

Eiji = A\—— = \P;; 6.6
jkl a(%eijekl) Jkl ( )

P;jii (e) corresponds to the direction of the rate of stiffness degradation tensor E; jki- For a composite material
with interfacial debonding, the direction of rate of stiffness degradation varies with increasing damage and
hence P;;r;(e) does not remain a constant throughout the loading process. The model requires the evaluation
of k, @ and Pjji; in equation (6.4). These are determined from the results of micromechanical simulations of
a RVE with periodic boundary conditions. The function x(W,) is evaluated for a reference loading path and
all other strain paths are scaled with respect to this reference. Upon determination of the maximum value
Wy for a reference loading condition, the value of a for any strain path can be obtained by simple scaling.
To account for the variation of Pj;;(e), any macroscopic strain evolution path is discretized into a finite set
of points. The values of Pjj; are explicitly evaluated at these points from RVE based simulations. Values
of P;;; for any arbitrary macroscopic strain value can then be determined by interpolating between nodal
values using shape functions of a 3D linear hexahedral element. The details of the parameter evaluation

process in the macroscopic CDM model are discussed in [75].
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6.2.2 Computational Subdomain Level-1 ()

Level-1 is an intermediate computational subdomain, introduced as a swing region for establishing criteria
for switching from macroscopic level-0 regions to level-2 regions of pure microscopic computations. The
switching criteria are based on analyses of the macroscopic problem, as well as of the microstructural RVE
problem. The asymptotic homogenization theory is used for this level to decouple the set of governing
equations into a set of (4) homogenized equations representing the macroscopic problem corresponding to a
length scale x, and (%) microscopic equations for the RVE Y (x), represented by a length scale y. Details of

the decoupled macro- and micro-equations are given in the appendix section 6.7.1.

Gradients of important field variables are evaluated from macroscopic analysis to assess the deviation
of macroscopic uniformity. Such gradients may be the effect of strong microscopic non-homogeneity in the
form of highly localized stresses and strains or damage. The RVE-based microscopic analysis, on the other
hand, provides effective criteria to estimate departure from periodicity conditions, especially in the event of
evolving microstructural damage. The adaptation criteria for level transitions are discussed in section 6.4.

Two sets of finite element problems are solved for the level-1 subdomain in sequence, viz.,

1. Macroscopic analysis: Incremental macroscopic analysis of the computational domain is performed using
the CDM model to evaluate macroscopic variables e.g. stresses and strains due to the increments in

applied loads.

2. Microstructural RVE analysis: This is a post-processing operation in which microstructural analysis
of the RVE is conducted for each integration point of the macroscopic elements. The strain field e;;,
obtained from macroscopic analysis with the CDM model, is imposed on the RVE as an external driver,
together with periodic boundary conditions on the boundary of the RVE as shown in figure (6.1)a.
Microscopic stresses o;;, strains ¢;; and other variables are computed in this post-processing stage for

each RVE.

Remark 1: The macroscopic computations of level-0 and level-1 elements are performed with the conventional

displacement-based finite element method, while all microscopic calculations in the RVE of level-1 elements
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are performed using the Voronoi cell FEM [80, 35, 53].

Remark 2: Computational models in the macroscopic level-0 and level-1 subdomains are refined adaptively by
selective h- or h-p strategies. ‘Error’ and convergence criteria for this refinement have been discussed in [74].
Local enrichment through successive mesh refinement or enhancement, serves a dual purpose in the multi-
level computational strategy. The first goal is to identify regions of high discretization ‘error’ and improve
convergence through mesh enhancement. The second is to identify regions of high modeling error and zoom
in on these regions to create higher resolution. These regions are generally characterized by large gradients
and localization of macroscopic variables. Element refinement in these regions is helpful for reducing the
length-scale difference between macroscopic elements in the homogenized domain and microscopic regions

with explicit representation of heterogeneities.

6.2.3 Computational Subdomain Level-2 (€, )

The level-2 subdomain of pure microscopic analysis emerges from level-1 elements in regions characterized
by (a) departure from macroscopic uniformity, e.g. regions of localization or fracture, and (b) significant
microstructural non-uniformities manifested by e.g. growth of localized damage. Prior to transition to level-
2 elements, a high spatial resolution is reached in the macroscopic mesh, resulting in small elements, by
h- or hp- refinement. The successive refinement process stops when a certain element size is achieved and

subsequently the model changes from macroscopic to pure microscopic. A scale ratio SR is chosen a-priori

Size of level—2 element

to ascertain this element size. Depending on the choice of SR = == F Tocal RVE

, the microscopic
model in any given level-2 element can encompass large portions of the microstructure with many discrete
heterogeneities. The level-2 elements are constructed by filling with the exact microstructure at that location,

as outlined in the following steps and shown in figure 6.2.

e Use appropriate adaptation criteria to determine if a level-1 element needs to switch to level-2 element.

e Identify a region in the microstructure Q,,,;., that is located in the same region as the level-2 element.

Qunicro should extend beyond the element boundary by approximately two fiber lengths.

o Tessellate the local microstructure to generate a mesh of Voronoi cell elements as shown in figure (6.3).
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e Carve out the microstructural region of the level-2 element from the local microstructure Q,,;cro- This
procedure will result in dissecting some of the fibers on the boundary. When this happens, additional
nodes are generated on the Voronoi cell boundary at locations where the fiber surface and Voronoi
cell edges intersect the boundary of the level-2 element. The dissected conjugate pieces of a fiber

belonging to two contiguous level-2 elements are joined together when the two contiguous elements

share a common edge.

le ® L 4

< <0 ¢ ¢
\/C()JJ(Lj(c;}JC‘ | Level-0/1 Element ] Transition element
o %OO q [ Level-2 element OGO Special interface layer
S evel-0/1 nodes
O Level-0/1 nodes at the transition interface

®es’e 0” 0g0 0 n!;

micro ®  VCFEM nodes on level-2/transition boundary
X VCFEM internal nodes
Y Transition element nodes at the interface
(a) (b)

Figure 6.2: (a) Process of carving out level-2 element microstructure (b) Interface constraints between level-
0/level-1 and tr elements

Requirement of high-resolution micromechanical models in these elements entails prohibitively large com-
putations using conventional finite element methods. The microstructure-based Voronoi cell FEM [35, 53, 80]
is particularly effective for modeling level-2 elements because of its efficiency in modeling large heterogeneous

regions [35, 53, 80, 81, 74]. Each Voronoi cell with embedded heterogeneities (particle, fiber, void, crack etc.)
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represents the region of contiguity for the heterogeneity, and is treated as an element in VCFEM. VCFEM
elements can be considerably larger than conventional FEM elements and incorporate a special hybrid FEM
formulation. Incorporation of known functional forms from analytical micromechanics substantially enhances
its convergence. A schematic diagram of Voronoi cell elements is shown in figure (6.3). A high level of ac-
curacy has been achieved with VCFEM for modeling problems with microstructural damage by particle
cracking [36] and fiber-matrix interfacial debonding [35, 53]. For debonding simulation, imperfect interfaces
are represented by the cohesive zone model [68]. Displacement degrees of freedom on the fiber-matrix in-
terface are constrained by the cohesive zone models as discussed in section 6.3. VCFEM has been shown
to be significantly more efficient than commercial displacement based FE packages for modeling complex

microstructures with evolving damage.

Figure 6.3: A typical level-2 element containing an aggregate of microstructural Voronoi cell elements with
relevant notations.
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6.2.4 Scale Transition Subdomain ()

The interface between the level-0 or level-1 elements and the level-2 elements with explicit representation
of the heterogeneous microscopic domain, needs a special treatment to facilitate smooth transition of scales
across the element boundaries. A layer of transition elements (E;. € 1) is sandwiched between these
elements, where (£24,) is the transition subdomain as shown in figure (6.2)b. The E;,. elements are essentially
level-2 elements with compatibility and traction continuity constraints imposed at the interface with level-
0/level-1 elements. It is assumed that layers of Ey, elements are located beyond the critical hot-spots,
at which homogenization fails. Hence, the homogenized laws are sufficient at their interfaces with level-
1/level-0 elements. A weak form of the interface displacement continuity is incorporated through the use of
Lagrange multipliers on this interface [74, 73]. This results in a weak satisfaction of the interface displacement

compatibility and avoids the occurrence of spurious forces that arise if the displacements are strongly coupled.

6.3 Coupling Different Levels in the Concurrent Multi-Scale Al-

gorithm

The concurrent multi-scale analysis requires that all levels be coupled for simultaneously solving for variables
in the different computational subdomains. Consequently, the global stiffness matrix and load vectors are
derived for the entire computational domain (Qper = {Qo U Q1 U Q12 U Q4 }). The corresponding domain
boundary is delineated as T'per = {Tio UTy1 UT 2} where T'yg = 09 N Ther; Tin = 0 N Thet; Tio =
ON2 N Thep. Let Ty = 01 N Oy, delineate the boundary between the level-1 and transition elements,
where the displacement continuity is satisfied using Lagrange multipliers. The incremental form of the

equation of principle of virtual work equation for Q. at the end of an increment, can be written as the sum
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of contributions from each individual domain, as

0duy’ 10
/ S+ A% 2% g~ [ (4 + At)sul ar
Qio 6.’8]’ Tio
n
-l-/ (Eij =+ AE”)% dQ) — (ti + At,)duil dar
Qi1 (9.1']' I'n
ir
+/ (Uz'j + AO’,’j)a(sui dQ) — / (t; + Ati)éuﬁ’" dr’
Q. Oz Ter
12
+/ (Uz'j + Adij)% dQ) — / (t: + Ati)éu? dr
Q2 6.’17]' VP
+4 ()\i.o/” + A/\io/ll)(vi + Av; — uio/ll — Aui.o/”)df
Fint
—}-(S/F ()\? + A/\fr)(vi + Av; — ufr — Au?)dl‘ =0 (6.7)

The prefix A symbolizes increments of the respective variables in the incremental solution process. The
superscripts [0, 11, 12, tr correspond to association with the respective level, while the (/) sign refers to
variables that could belong to either level. ¥;; are the components homogenized macroscopic stresses ob-
tained from the CDM constitutive model for ;o and €2;;. The applied tractions ¢; are at traction boundaries
of the respective domains. The boxed parts in equation (6.7) correspond to contributions from level-2 and
transition computational subdomains that are generated from VCFEM solutions of the microstructural re-

0,01 ,tr
i Ui U

gions. Displacement components u and u!? are on the boundaries of elements coinciding with the
boundaries of the 9, Q1, Q4 and ;2 subdomains. An intermediate segment I';;,; is added at the interface
between the level-1 and #r elements, as shown in figure 6.2. On these segments, displacement components v;
are interpolated with any order polynomial functions, independent of the interpolations on /1 or dOF".
Even for highly nonhomogeneous displacements, high order interpolations on the intermediate segment are
able to smoothen the transition between levels. This has been demonstrated for problems without damage
through numerical examples in [74]. The last two terms in equation (6.7) use Lagrange multipliers to fa-

cilitate incorporation of a weak form of the interfacial displacement continuity on Ty, A/t and X" are

vector columns of Lagrange multipliers belonging to domains €29/, and €y, respectively at T'y,;. The Euler’s

10/11

equations, obtained from setting the coefficients of dv;, 0A; and dA!" to zero respectively in the principle
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of virtual work (6.7), are

)\20/“ + A)\éo/ll = (U'ij + Aa,-j)lo/”nj = —()\? + A)\fr) = —(Uz'j + Aa,-j)”nj

(ui + Aug)' M = (u; + Auy)'" = (v; + Avy) (6.8)

where n; is the unit normal vector and )\20/ " and AL correspond to the interfacial traction components on
0o/ and Oy, respectively. The displacements v; and the Lagrange multipliers )\20/ " and )\22/ " on the
intermediate boundary segment are interpolated from nodal values using suitably assumed shape functions

as:

{v}=[Liml{am} >, A"} = [Lyoml{Awm} , (A"} = [La]{An} (6.9)

The displacements u® and ul! in each level-0 and level-1 elements are interpolated by the standard or

hierarchical Legendre polynomials based shape functions as:

4 3\
I
950
{u}® = [Npo]{aw} = [N}, Ng] 1 ’
[ 9% | (6.10)
4 \ *
I
1 _ N _ NI NO qll
{u}” = [Nul{an} = [N;; Nj]< )
o
\ qll 7

As shown in figure 6.2, the generalized displacements in the level-0 and level-1 elements are subdivided into
two classes: (i) those at nodal points, which interface with transition elements, and (ii) those at all other
nodes. Generally, only level-1 elements will interface with transition elements because of the sequence of
introduction of computational levels. The generalized displacements quo i corresponds to the nodal degrees
of freedom in level-0/level-1 elements at the interface with transition elements, while ql% /i correspond to
the remaining degrees of freedom in these elements. The solution of the algebraic form of equation (6.7) is
obtained using the Newton Raphson iterative solver. Setting up the tangent stiffness matrix requires consis-

tent linearization by taking directional derivative of equation (6.7) along incremental displacement vectors
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Au and Av, and the Lagrange multipliers A\. For the i—th iteration in the solution of the incremental

variables, assembled matrix equations derived from equation (6.7) has the following structure.

_ qi g i g y i
K}E)I/ll KlId(/)ll 0 0 0 Pom 0 A(1}0/11 W AF}O/II
KE())’/IU Kl%/(l)l 0 0 0 0 0 A011(())/11 AFI(())/II
0 0 Ky K 0 0 Py Aqg;, AF},
0 0 Ky' Kpooo 0 0 0 |\ AdQy (= AF, ( (61D
0 0 0 0 0 Quo/nn Qir AQint AFins
P;‘f)/ll 0 0 0 Q%/ll 0 0 AApm AF zio/11
I 0 0 P, 0 Q7. 0 0 11 AAg ) | AF z12/¢r )

As explained before, the superscript I represents quantities associated with nodal points at the interface with
transition elements while superscript O indicate association with nodes at other regions. The two notations
in the superscript separated by comma, represents the node coupling effect. For example, the superscript
I, 0 corresponds to the coupling between the non-interface and interface nodes. The stiffness submatrices

[Ki0/:11] and sub-vector {F;/;1} correspond to those for the level-0 and level-1 elements and are expressed as

ONo 0% yn ONg
K, manf3 = sy
( lO/ll) B ~/onUQll Oz, Oey Ox

(AF/1)ma = /

(tm + Aty )Nodl + / (A + AN)N,dD (6.12)
I,

Tint

ON,

— Yii + AX ) ——dQ
‘/QZOUQII( ’ ) On,

The subscripts (m,n) correspond to the degrees of freedom while («, 3) correspond to the node numbers in
the element. These matrices and vectors are further divided based on the classification of the I and O nodes.

The coupling between the level-0/level-1 and tr elements is achieved through the [P] and [Q] matrices, which
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may be expressed as

(-PlO/ll)manﬁ = _/ Nﬁa(L,\lo/“)nﬂdF
Cine

(Ptr)man,@ = / N (L)\l2/t7‘)nﬂdr
(6.13)

(QlO/ll)manB = / (L;I;Lt)ma(L)\m/”)nﬂdF

(Qtr)man,@ :/ (Li{;t)ma(L)\")nﬁdF

Tint

Contributions to the load vector {F} due to coupling between level-0/level-1 and tr elements are given as

(APutdn == [ Eh)KO 4 ANO/) 0 = [ (T8 0N + AN, T

int int

(AF\i0/11)ma = / Lio) af{vm + Av — (wio/11)m — Ao/ )m }dT (6.14)

(AF)\lz/tr ma = / L)\tr {Um + Avp — (UZZ/tr)m - A(ul2/tr)m}dr

Finally, the stiffness [Kiz/¢| and the load vector {Fiz/t, } for level-2 and tr elements are obtained by VCFEM
calculations followed by static condensation to represent the virtual work in terms of the boundary terms

only.

6.3.1 Modified Voronoi Cell FEM Formulation for a RVE in Level-1 Elements

Details of the Voronoi Cell FEM are provided in [80, 35, 53] and have been summarized in the appendix section
6.7.2. As discussed in section 6.2.2, the post-processing phase for level-1 elements require the evaluation of
different variables in the RVE from known values of macroscopic strains. A small variant of the formulation in
equation (6.40) enables this execution. The energy functional for a RVE (V') with Y-periodic displacements

and Y'-anti-periodic tractions on the boundary, and imposed macroscopic strain (e;; + Ae;;), may be written
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as

1
mAvE — /Y §S$klAa$Aa,'c’; dy — /Y Sthaon Aoy dY (6.15)

m

1 C Cc C C [« C
—/ iswklAU”Aakl dY —/ SijklaklAaij dY
Y. Ye

+ / (o + AT )ns (uf + Aug)ddY — / (07 + Ao s (ul + Aul)ddY
aY. aYym
upy +Auy —up —Au,

+ / (0% + Acg,)nS (uS + Aug)ddY — / / Trd(u™ — ue )doY
oy s oY. Ju

n —Un
uy” +Auy —uy —Aug
—/ / T d(uy® — uf)doY
Y. Ju.

m_, e
t Uy

+ / (ez’j + Aeij)AOZ-ldY +/ (ez‘j + Aez-]-)Aafde (6.16)

m c

The boxed term corresponds to the additional energy due to the imposed macroscopic strain field on the

RVE region Y. The Euler-Lagrange equations corresponding to this energy functional are:

€ij(X,¥) + Aeij(x,y) = Sijri(0ij + Aoiz) = (es5(x) + Aeyj(x))

LLP) + Auly) | 0 ) +AwE) oy
2 6yj 6y,~
(6.17)
u; is Y-periodic and o7;n} is Y-anti-periodic on 0Y, (6.18)

The corresponding weak form of the element kinematic relation is written in a matrix equation form as

Jo, [PTT[S™|[P™]d2 (0] B +OB™ |
_ o Jo PSP | | g+ e
} q¢ + Aq®

Joa, [P [0e][LE)dOQ  — [oq [P™]T [n°][L]dO0 [0]

q™ + Aq™
[0] [0] Joq, [P°]" [n°)[LF]dOQ2
- qC + ch
_ me [P {e + Ae}dD 6.19)
ch[PC]T{e + Ae}dQ
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or in a condensed form

[H{B + AB} = [G*{a + Aq} — {R7} (6.20)

This relation is then substituted in equation (6.44) for obtaining the RVE based solutions. It should be

noted that displacement periodicity is imposed on the RVE boundary for solving this problem.

6.4 Criteria for Adaptive Mesh Refinement and Level Transitions

In the application of the multi-level model, the following criteria are used for mesh-refinement and level
transitions due to discretization and modeling error respectively. Many of these adaptation criteria are
based on the physics of the problem in consideration, since rigorous mathematical error bounds are scarce
(or even non-existent) for these nonlinear problems. Consequently they are nonunique and other indicators

may be used if appropriate.

6.4.1 Refinement of Level-0 and Level-1 Meshes by h-Adaptation

The computational models in level-0 and level-1 subdomains are enriched by h-adaptation based mesh re-
finement to reduce discretization ‘error’. The h—adaptation procedure subdivides candidate macroscopic
elements into smaller elements to reduce a suitably chosen error. It is necessary to impose boundary dis-
placement compatibility constraint conditions between contiguous divided and undivided elements in this
method [82]. This local mesh enrichment is intended to reduce discretization error and to identify regions
of modeling error by zooming in on localization regions with evolving gradients. For CDM based evolving

problems, an adaptation criterion is formulated in this paper in terms of the jump in traction across adjacent
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element boundaries that signifies local stress gradients. The condition is stated as:

Refine element ‘e’, if the traction jump error across the element

satisfies the condition: EY > O, x EY

avg’

where

 Joa, (TR0 + [[T)1?) do92
a Jo, 400

NE ]
gy, - (CAEEDP

1/2 t7\2
avg NE ) / a‘nd (E])e

(6.21)

Here N E is the total number of level-0 and level-1 elements in the entire computational domain, T}, T), are
the components of element boundary tractions in the z and y directions and [[.]] is the jump operator across

element boundary 0€Q,. A factor C; (< 1) has been chosen from numerical experiments.

6.4.2 Criteria for Switching from Level-0 to Level-1 Elements

Level-0 to level-1 element transition takes place according to criteria signaling departure from conditions of
the homogenizability that are based on macroscopic variables in the continuum model of level-0 elements.
The degrading dissipation energy Wy in the CDM model is a strong indicator of localized damage evolution.

Consequently, a criterion is formulated as:

Switch element e’ from level-0 to level-1 if :

E9% 5« (Wy)e > Ca x B9 % (W3)mas (6.22)

mar

where EY 4¢ is the norm of the local gradient of the degrading dissipation energy (Wy)., expressed as:

Eode = \/(6(;/1;111)8)2 + (8(;1;2)6)2 (6.23)

Eg%e is the maximum value of E¢? for all elements and C> (< 1) is a prescribed factor. The criterion (6.22)
is helpful for seeking out regions with high gradients of W in regions of high W itself. In a previous paper

by the authors [74], the gradient E9%° was expressed in terms of the maximum difference in the damage for
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neighboring elements as E9% = Max|(Wy4)e — (Wa)adjacent|- A more accurate definition of the local gradient
is adopted in the present work, using the Zienkiewicz-Zhu (ZZ) gradient patch recovery method [107]. In
this method, interpolation of W is assumed in the form of a polynomial over a patch of elements adjoining

a nodal point in a level-0 element. The least square minimization process leads to the local matrix equation

Y [Ne(er,22)]" [Ne(ar, 22)]{a} = D [Ne(er,22)]" (Wa)e (a1, 22) (6.24)

where [N,(z1,22)] is a matrix containing polynomial interpolation terms and ne is the number of elements
in the patch. The equation (6.24) is solved for the coefficients {a}. The gradients of W, in each element are

calculated from the nodal values using element shape functions as

4 4
OWy Ny Oy _ g 0N,
a=1

61’1 6331 6.’172 a =1 6.’[:2

Wa)a (6.25)

6.4.3 Criteria for Switching from Level-1 to Level-2 Elements

For elements in which macroscopic nonuniformity has been established according to equation (6.22), de-
parture from RVE periodicity is taken as an indicator for activating a switch from level-1 to level-2. The
switching criterion is developed in terms of evolving variables, e.g. the averaged strain at the fiber-matrix

interface in the local microstructural RVE. The averaged strain is stated as:

1 1

Dj=—" €;d0 = ——
J ZQC fUan dof} uoQ.

ij = w;|n; + [u;]n;)doQ 6.26
J fUBQC d@Q uBa. ([ ] J [ J] ) ( )

where the integral is evaluated over all the fiber-matrix interfaces in the RVE. The jump in displacement
across the fiber-matrix interface with a normal n; is denoted by [u;]. For perfect interfaces [u;] will be zero.
Thus, D;; corresponds to the contributions to macroscopic strain due to damage only, and D;; = 0 in the
absence of damage. Departure from periodicity will result in a significantly different averaged strain D;;
in response to different conditions on the boundary of the microstructural region. For example, let ij’-lz

correspond to the solution of a boundary value problem of the local microstructure included in a level-2
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element (see figure 6.2) subject to boundary displacements that have been obtained from the macroscopic
level-0/1 analysis. The scale of the microstructure is relevant in this analysis since periodicity is not imposed
on the boundary. On the other hand, let DZ’-RVE be from the solution of a boundary value problem of the
local RVE with imposed macroscopic strains and subjected to periodic boundary displacements constraints.

The difference in these two strains for a level-1 element e may be quantified as

Egper — max(|Df,1l2 _ Df’lRVEL |Dg,2l2 _ DSQRVEL |Di,212 _ Df,ZRVEl) (627)

For evaluating ijilz in a given step of the incremental solution, only the increments in the present step
are calculated by the level-1 macroscopic displacement boundary conditions. It is assumed that the RVE-
based solution is valid all the way upto (but excluding) the present step. The departure from periodicity is

measured in terms of the difference in averaged strains EZP°", and hence the criterion,

Switch element e’ from level-1 to level-2 if :

E®er > C3DEVE (6.28)
RVE ; ; e,RVE . . .
where D, . is the maximum value of |D;; | for all the level-1 elements in the computational domain.

Remark: Once the regions of level-2 and transition elements have been identified, it is important to update
the local micromechanical states of stress, strain and damage to the current state. This step should precede
the coupled concurrent analysis. For this analysis, the history of the macroscopic displacement solution on
the level-0/level-1 element boundary prior to the switch is utilized. The local micromechanical (VCFEM)
boundary value problem for the level-2 element is incrementally solved from the beginning to obtain the
history of stresses, strains and damage in the microstructure from the macroscopic boundary displacement

history.
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6.5 Numerical Examples with the Adaptive Multilevel Model

Two sets of numerical examples are solved to study the effectiveness of the multi-level computational model

for composite materials.

6.5.1 Multi-level Model vs. Micromechanical Analysis

This example is aimed at understanding the effectiveness of the multi-level model in analyzing a nonuniform
composite microstructure by comparing its predictions with those by pure micromechanical analysis. It is
computationally intensive to conduct pure micromechanical analysis with evolving damage for very large mi-
crostructural regions. Consequently a computational domain with a small population of fibers, as shown in
the optical micrograph of figure 6.4(a), is considered. The micrograph is for a polymer matrix composite with
a random dispersion of uniaxial fibers. The dimensions of the micrograph analyzed are 100um x 70.09um,
containing 264 circular fibers of diameter 1.645um each, corresponding to a volume fraction of 32%. Though
the domain may not be adequate for a clear separation between continuum and micromechanical regions
(since relatively large regions are needed to materialize the RVE), the results of this example are enough to

show the effectiveness of the overall framework.

The optical micrograph is mapped onto a simulated microstructure with circular fibers that is tessellated
into a mesh of 264 Voronoi cell elements, as shown in figure 6.4(b). The constituent materials in the composite
system are an epoxy resin matrix, stainless steel reinforcing fibers and a very thin film of freekote (< 0.1um)
at the fiber-matrix interface. The freekote imparts a weak strength to the steel-epoxy interface, which allows
a stable growth of the debond crack for experimental observation. The experimental methods of material and
interface characterization have been discussed in [35]. Both the matrix and fiber materials are characterized
by isotropic elasticity properties. The matrix material has a Young’s modulus, Eposy = 4.6 GPa and
Poisson’s ratio, vepozy = 0.4, while the fiber material has a Young’s modulus, Es e = 210 GPa and

Poisson’s ratio, vstee; = 0.3. A bilinear cohesive law described in [53, 68] is used in this analysis for modeling
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Figure 6.4: (a) Optical micrograph of a steel fiber-epoxy matrix composite with 264 fibers (b) the simulated
computational model with a Voronoi cell mesh

the fiber-matrix interface. In this model, the normal and tangential tractions are given as

(
t6,, if §<6.
dp  d¢ 88
"26_%:%@:”6" if 6, <8<6,
LO lf 6>(5€
)
326, if §<6.
_0¢ 9905
Tt_a_(st_%a_at“tﬂ%t if 6. <8<, (6.29)
0 if §>0,
\

where t is a bilinear function of the interfacial separation as

Tmarg WS <4,
¢ = (6.30)

%a—maz Vé > o,
The unloading behavior in the hardening region is linear following the loading path. In the softening region,
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the unloading proceeds along a different linear path from the current position to the origin with a reduced

stiffness, for which the ¢ — § relation is

Omaz dmas —Oe5 5 5 5, and 6 < Gmas (6.31)

= 5mam 50 - 56

It is expected that the degrading dissipation energy Wy in the macroscopic CDM model depends on the
cohesive parameters in the microstructural debonding model. A square RVE with a single circular fiber is
simulated for interfacial debonding with three different sets of cohesive parameters, as shown in the inset
of figure 6.5. The cohesive energies are the same for all cases. However in one case, the critical separation
length §, is increased while in the other, the corresponding peak stress o,,,4, is reduced. The figure 6.5 infers
that while §, has a small influence on Wy, the effect of 0,4, is certainly significant, at least in the early

stages of straining.

The cohesive parameters used in this paper are: ome; = 0.005 GPa, d, = 5.1 x 107® m and J, =
3.1 x 107* m. The microstructure is loaded in tension in the horizontal direction with a displacement of
0.1pm that is uniformly increased in 20 equal increments, corresponding to a total strain of €117 = 0.1%. The

displacement boundary condition is imposed along the right edge, as shown in figure 6.4(b).

Micromechanical analysis by VCFEM

The pure micromechanical VCFEM solution using the mesh of figure 6.4(b) has been presented in [53] and
are used here as reference solutions for the multi-scale simulation. Figure 6.6(a) shows the contour plot of
microscopic stress o, at the final step of the micromechanical simulation with a depiction of interfacial
debonding. The right side of the microstructure shows significant concentrated damage with this load. The

debonding initiates at the top and percolates to the bottom of the microstructure along a narrow band.

Multi-Scale Analysis with the Multi-Level Model

Multi-scale analysis is performed by the concurrent multi-level computational model and the results are

compared with those from the micromechanical VCFEM analysis. For the multi-level model, the entire com-
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Figure 6.5: The degrading dissipation energy W; as a function of strain, evaluated for different cohesive zone
parameters in the bilinear cohesive law

putational region of 264 fibers is first divided into 9 macroscopic finite elements as shown in figure 6.7(a). For
evaluating the homogenized constitutive properties for each of element, statistically equivalent representative
volume element or SERVE for the microstructure underlying each macroscopic element is first identified.
Various statistical methods have been used to determine the size scale of the RVE and the number of inclu-
sions contained in it [70, 37, 86, 98]. Rigorous methods of evaluating statistically equivalent representative
volume elements by a combination of statistical methods and micromechanical analyses have been conducted
by the first author in [83, 90]. However, since the number of fibers in the micrograph is limited in this ex-
ercise, a simpler assumption is made. The SERVE for each element is assumed to consist of all the fibers
belonging to that element. For example, to generate the SERVE for an element window in the micrograph
of figure 6.4(b), all fibers whose centers are located within this window are first identified as constituents
of the RVE. This is shown by the aggregate of black fibers in figure 6.8(a). The homogenization method,

discussed in sections 6.2.2 and 6.3, requires a periodic distribution of the RVE and this is achieved by locally
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repeating the arrangement of fibers in both the z; and x» directions for a period length in figure 6.8(a). This
means that for each fiber identified in the element, at (z1,x2), four identical fibers are placed at the locations
(x1 £ X1,22), (21,22 £ Xo) where (X, X5) are periods in the two directions. The period lengths X, X, are
selected such that the volume fraction of RVE matches that of the local microstructure. Finally, the domain
is tessellated into a network of Voronoi cells as shown in figure 6.8(b) Tessellation provides a natural way
of creating periodic SERVE boundary. For non-uniform fiber arrangements, the SERVE boundary consists
of non-straight line edges. The nodes on this SERVE boundary are periodic, i.e. for every boundary node
a periodic pair can be identified on the boundary at a distance of one period along each of the coordinate
directions. In figure 6.8(b), the node pairs are identified as AA, BB etc. The number of fibers and their

distribution in the SERVE of each macroscopic element is shown in figure 6.7(a).

Since the number of elements in this exercise is very small (only 9), level-0 simulations with the CDM
model is bypassed in the multi-level analysis. All elements are level-1 at the start of the multi-level simulation.
Switch to level-2 elements is made in accordance with equations (6.27) and (6.28) with C2 = 0.2. However

the Df]’-m - DEJZRVE terms for each element in equation (6.27) are replaced by the difference in RVE based

el,RVE ¢2,RVE
ij - Dij

averaged strains between adjacent elements D . Also, as opposed to an entire macroscopic
element, a single layer of transition Voronoi cell elements is included between the level-1 and level-2 elements.
In figure 6.7(b) the Voronoi elements containing the grey fibers constitute the transition layer, while those
containing the black fibers belong to level-2. An interface segment I';,; is inserted between the transition and
level-1 elements at a distance Ly, /2 from the right edge. Convergence properties of the multi-level model
are studied by considering two cases with % = 0.35 and % = 0.45. This is achieved by changing the
size of the initial level-1 elements.

As depicted in figure 6.7(b), only three elements (3, 6 and 9) at the right side of the initial mesh switch
from level-1 to level-2. A comparison of results by (a) VCFEM based micromechanical analyses (all level-2
elements) , (b) homogenization based macroscopic analysis (all level-1 elements), and (c) concurrent multi-

level analysis (level-1 and level-2 elements) for Lesz — 35 and 0.45 is made. Contour plots of 011 (GPa
L

showing interfacial debonding at the end of the simulation are shown for the concurrent multi-scale analysis
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in figure 6.6(b,c). The discrepancy in the damage path predicted by the micromechanical analysis and the
multi-level analysis reduces sharply with increasing % value. This can be attributed to the fact, that
the damage path is very sensitive to the macro-micro interface conditions. Since the sample size is small
and there is no real periodicity in the microstructure, the proximity of the level-1 boundary to the damage
localization zone alters the local boundary conditions. However as this distance is increased, the microscopic
stress distribution, debonding pattern and damage zone replicates the real event observed in micromechanical
analysis. The distribution of the micromechanical stresses 011, generated by pure micromechanical and multi-
level analyses, are plotted along a line through the middle of micrograph in figure 6.9. The micromechanical
stresses show only minor oscillations about an averaged value of the 0.005 GPa in the region to the left
of the level-1-level-2 interface. In the region to the right, where damage is predominant, there is clearly a

- N
convergence of the stresses with increasing =% value.

The macroscopic or averaged stress-strain response for element 1 (always level-1) and element 9 (changes
levels) are plotted in figures 6.10. For the micromechanical problems with debonding, the volume averaged

stresses and strains are evaluated by averaging the local fields over the microscopic domain as:

1 1
Ez’j = ﬁ/goij(arl,xg)dﬂ and 6ij = 5 /Q e,-j(xl,xg)dﬂ - Dz'j (632)

where D;; is the strain jump defined in equation (6.26). The results for all the models are in good agreement
for the element 1, where there is no significant microstructural damage. The small difference is due to the
periodicity constraints imposed on the microstructure. Also there is a difference between the results of case
1: % = 0.35 and case 2: % = 0.45, due to the interface conditions at I';,;. However, as is expected
the results are quite different for element 9, where significant damage is observed in figure 6.6. The level-1
analysis shows significant deviation from the micromechanical analysis due to imposed periodicity in the

. . . s N .
damage zone. Once again, the results improve significantly with increasing =/ ratio.
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6.5.2 A Composite Double Lap Joint with Microstructural Debonding

Adhesive bonded joints are considered as preferred alternatives to fasteners for joining structural components
due to their light weight. However, adhesively bonded structures consisting of different materials, can induce
high stresses near the interface leading to failure initiation by interfacial debonding. A double-lap bonded
joint with boron-epoxy composites as adherents, is analyzed in this example. An adhesive shown as ABCD
in figure 6.11(a) is used to bond the two composite materials. Only a quarter of the joint is modeled from
considerations of symmetry in boundary and loading conditions. For boundary conditions, the displacement
component u; is set to zero along the face x2 = 0 implying symmetry about the x; axis. The displacement
components u; and uy along the face 1 = 8h are set to zero corresponding to a fixed edge. A tensile
displacement u; is applied on the face of the lower ply at 1 = 0. Both plies above and below the adhesive
are made of unidirectional boron fiber- epoxy matrix composite materials. The fibers are uniformly arranged
in a square array in the microstructure, implying a square unit cell with a single circular fiber. The epoxy
matrix has a Youngs modulus E = 4.6 GPa and Poisson’s ratio v = 0.4, while boron fibers have a Youngs
modulus £ = 210 GPa and Poisson’s ratio v = 0.3. The material properties of the isotropic adhesive are:
Young’s modulus E = 3.45 GPa and Poisson’s ratio ¥ = 0.34. The bilinear cohesive law parameters for the

matrix-fiber interface are: oz = 0.02 GPa, 6. = 5.0 x 10~° m and J, = 20.0 x 10~* m.

Multi-level analysis for model with 450 fibers

In this model, the top ply above the adhesive consists of 10 rows of fiber, while the bottom row consists of
5 rows resulting in a total of 450 fibers. The microstructural volume fraction of fibers is V; = 20%. The
applied displacement on the face at z; = 0, is uniformly increased from zero to u; = 1.2 x 10~2h in 15
uniform increments. The number of fibers is kept low in this example, such that a micromechanical analysis
can be easily done for this example with a mesh of 450 Voronoi elements, each of which is a square unit cell.
The micromechanics solutions are used as a reference to determine the accuracy of multi-scale simulations.
Three different approaches are used to solve this problem. They are: (a) a macroscopic model using the
continuum damage model for constitutive behavior, (b) a detailed micromechanical VCFEM analysis, and

(c) a multi-level model for multi-scale analysis. The starting mesh in the multi-level model of the bonded
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joint consists of a uniform grid of 470 QUAD4 elements for macroscopic analysis as shown in figure 6.11.
The constitutive relation for each element is a fourth order anisotropic CDM model that has been devel-
oped for this unit cell with interfacial cohesive zone in [75]. Figure 6.12(a) shows the contour of degrading
dissipation energy W, at the final stage of loading by a pure CDM based macroscopic analysis. Damage
initiates near the bottom left corner A of the adhesive joint and propagates downwards to span the entire
region on the left of point A. Level-0 — level-1 transition in the multi-level analysis is performed using

equation (6.22) and level-1 — level-2 transition uses equation (6.28) with factors C> = 0.5 and C3 = 0.1.

The gradient of the energy \/ ( %‘;"1‘{)2 + (%)2 at the final loading stage, used in equation (6.22), is shown
in figure 6.12(b). The corresponding evolution of various levels in the multi-scale model is depicted in fig-
ure 6.13 at two different loading stages. There are 7 level-1 elements at 87% of the final loading. At the final
load increment, the multi-level mesh consists of 446 level-0 elements, 0 level-1 elements, 14 level-2 elements
and 10 transition elements. All level-2 elements emerge in critical the regions where both the gradient and
intensity of Wy are high in the macroscopic analysis. Figure 6.14(a,b) depict the contours of microscopic
stress 011 and the regions of debonding obtained by pure micromechanical and the multi-level models. The
results of the multi-level model are in excellent agreement with the micromechanical analysis, both with
respect to debonding regions and evolving variables. The maximum error in o711 is around 1%. The excellent
agreement is further corroborated in the plot of o1; along the vertical line through the microstructure in
figure 6.9. Figure 6.10(a,b) plot the macroscopic (averaged) X1; — ey; curve obtained from (a) macroscopic
CDM-based analysis, (b) micromechanical analysis and (c) multi-scale analysis with the multi-level model
at two different locations, P1 and P2 shown in figure 6.11(b). At P2, where the damage and its gradient
are low, solutions by the CDM model and micromechanics are in relatively good agreement. At this point,
the multi-scale model uses the CDM constitutive law. However, the CDM results are quite different from

the other two at P1, a hotspot where the damage and its gradient are high. It is assuring to note that the

multi-level model matches the micromechanics results quite well at this point.

The computational efficiency of the multi-level model is examined by a comparison of the CPU time

on a TA32 computer cluster for the different models. The computations are carried out in a serial manner
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using a single processor. The results are tabulated in table 6.1. Although the macroscopic CDM analysis is
faster, it can lead to significant errors. The complete level-1 solution is even slower than the micromechanics
solution, since it solves the RVE problem in every element. Accurate analysis with the multi-level model is at
least 7 times faster than the complete micromechanics and level-1 solutions for this problem. The efficiency

increases rapidly with increasing number of fibers in the analysis.

Model Level-0 | Level-1 | Micromechanics (Level-2) | Multi-scale
Time in seconds 71 300330 300310 42260

Table 6.1: CPU time on a TA32 cluster to solve the double lap joint model by various methods.

Multi-level analysis for model with 192000 fibers

This is a more realistic model of the composite joint with a large number of fibers, to realize the potential
of the multi-level model. The top ply consists of 160 rows of fiber, while the bottom row consists of 80 rows
resulting in a total of 192000 fibers. The geometric and material parameters are the same as in the previous
example, except for the special cases mentioned. A pure micromechanical analysis is not conducted due
to the large number of fibers. The problem is analyzed by (a) a macroscopic model by CDM and (b) the

multi-level model. The multi-level analysis activates all three types of adaptation:
e Refinement of level-0 elements by h-adaptation in accordance with equation (6.21), for C; = 0.7.
e Transition from level-0 to level-1 elements in accordance with equation (6.22), with Cy = 0.5.
e Transition from level-1 to level-2 elements in accordance with equation (6.28), with C3 = 0.1.

The effects of variation of cohesive zone parameters and the effect of volume fraction are studied. The unit
cells considered in this example have 2 volume fractions: (i) V; = 20%. and (ii) V; = 40%. Three different

cases with different parameters in the bilinear cohesive law are considered.
e (C1I: Same cohesive parameters as in section 6.5.2.

o (2 omas and 6. are the same as in section 6.5.2. However, §. is 4 times that in case C1. This reflects

the same cohesive energy with a smaller ascending slope.
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o C% 0pqqe is reduced by half and 6. is doubled. Hence the cohesive energy is the same as C1 with a

smaller peak stress. Also J. is the same as that in C1.

The starting mesh has 470 level-0 elements. For V; = 40% and case C1, the final mesh has 1688 level-0
elements, 24 level-2 elements and 33 transition elements as shown in figure 6.15(a). Figure 6.15(b) illustrates
the corresponding microscopic stress distribution and debonding in the level-2 regions near the hotspot at
A. The macroscopic (averaged) stress-strain plots are shown for two points in the composite joint: (a) near
the critical point A and (b) at a non critical point B are shown in figure 6.16. The predictions of the CDM
model agree with the multi-level model at the point B. However, the stress predictions by the CDM model
are considerably higher than those by the multi-level model at A, where damage is very localized and the

periodicity condition imposed by the CDM model is unrealistic.

The effect of V; on the damage evolution near the corner P1 is seen in figure 6.17 for the case C1.
A significantly higher W is observed for the higher volume fraction, which increases with evolving strain.
Figure 6.18 shows the distribution of W, at the end of the analysis for the different cohesive parameters.
Intense damage localization takes place near the junction A in the bond (see figure 6.11(b). Damage starts
from this location and propagates down and left towards the edge of the applied loading. Damage localization
is the strongest for the case C1, and propagates almost vertically down in a narrow zone. It is in these regions,
that scale transition to level-2 occurs. The damage distribution in the remaining parts of the composite joint
is rather low and uniform. Moving the peak stress in case C2 with a lower traction-displacement slope results
in a more diffused damage region and the damage seem to spread more in the region to the left of point
A. The damage localization reduces for the case C& with lower peak stress and the damage is more evenly

distributed. For V; = 20%, the damaged regions are less localized.

6.6 Conclusions

An adaptive concurrent multi-level computational model is developed in this paper for multi-scale analysis

and prediction of damage in fiber reinforced composite materials. Microstructural damage is manifested by
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fiber-matrix interfacial debonding in this paper. Microstructural damage mechanisms leading to complete
failure are more complex than the singular mode of damage considered in this paper. The authors are
currently working towards this goal, where interfacial debonds bifurcate into the matrix and eventually
coalesce to cause a continuous fracture path. A step forward in this direction can be seen in a recent paper
on the growth and coalescence of multiple cohesive cracks [54]. However, the intent of the present paper is to
create a framework for the multi-scale coupling so that more complex damage mechanisms may eventually
be incorporated. Hence interfacial debonding is deemed sufficient for this purpose.

The multi-level model invokes two-way coupling of scales, viz. a bottom-up coupling with homogenization
at lower scales to introduce reduced order continuum models and a top-down coupling at critical hotspots
to transcend scales for following the microstructural damage evolution. The bottom-up coupling results in a
continuum damage mechanics (CDM) model developed in a preceding paper [75]. Three levels of hierarchy,
with different resolutions, evolve in this model with adaptation. Adaptive capabilities enable effective domain
decomposition in the evolving problem with damage, keeping a balance between computational efficiency and
accuracy. Macroscopic analysis is done with the CDM model of [75] for high efficiency. Pure micromechanical
analysis is computationally exhaustive and the adaptive methodology optimally reduces this region to a
minimum. The Voronoi cell finite element model [35, 53] is effectively utilized for efficient micromechanical
analysis of extended microstructural regions. The numerical examples establish the accuracy and efficiency
aspects of the model, as well as demonstrate its capability in handling problems involving damage in large
composite domains. Overall this work lays an effective foundation for solving multi-scale problems involving

localization, damage and crack evolution that may be impossible to achieve using any single scale model.

6.7 APPENDIX
6.7.1 Microscopic and Macroscopic Equations in Computational Subdomain
Level-1 ()

Any function f in the RVE is assumed to be Y-periodic, i.e. f(x,y) = f(x,y +kY)Vk=1,2,---. Peri-

odicity conditions are used on the RVE boundary to decouple the set of equations at different levels as:
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Microscopic equations

1, 0u;(y ou;(y
€i(x,y) = ei(x)+ 5( 3; ) + 6]y( ))
J k3
= en(x)[0ridi; + € (%) azgy('y)] (Kinematics)
j
0ij(%,¥) = EijriOmidn + €} (X) 6”;3/(;’) €mn(X) (Constitutive)
760“' (,¥) = 0 (Equilibrium) (6.33)
Oy;
Macroscopic equations
1 _1 0uy, 0 L
Tij(x) = v Jy Eijkt (OkmOin + e’“ma_y,) dY emn = Ejjmpemn(X) (Constitutive)
672:;;()() + fi=0  (Equilibrium) (6.34)
J

In the above equations u; is a Y-periodic displacement function and o;;(x,y) is the stress field in the RVE

respectively, while ¥;;(x) and e;; are the homogenized stress and strain tensors. Eyji; and EZ,

ijki correspond

to microscopic and homogenized anisotropic elasticity tensor respectively. The details of the derivation of

equations (6.33) and (6.34)are discussed in [81, 74].

6.7.2 The Voronoi Cell Finite Element Model

A typical level-2/ transition element consisting of microstructural Voronoi cell elements is shown in figure

6.3. The following assumptions are made in the formulation of each VCFEM element.

e Stress fields o7} in the matrix phase ,;, and o7; in the inclusion phase (. of each Voronoi cell element

Q. are independent and equilibrated. The stress interpolations in each phase are expressed as :

{o ™} =[P"{B"} in Qp and {o °} =[P°{B}in Q. (6.35)

where the matrices [P™/¢] are obtained from assumed stress functions like the Airy’s stress function
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and {8 ™/°} are unknown coefficients to be solved.

e Compatible displacement field u§ are assumed on each Voronoi cell element boundary 9f2, and inter-

polated as:

{u®} = [L°Hq"} (6.36)

e Compatible displacement fields u]* and u§ are assumed on the matrix and inclusion sides of the matrix-

inclusion interface 0f). respectively, and are interpolated as :
{u™} =[L°]{q™} on 00" and {u} = [L°{q°} on 00 (6.37)

In an incremental formulation, the potential energy functional for each element is expressed in terms of the

incremented stresses and displacements as:

( ”,AO'”, I ij>

ol Aot ul, Auf, ul” Au?,uf,Aug):—/ AB™ (03}, Aojj )dS)
Qm

—/Q AB¢(aj;, Acj;)dQ +/Q (0f; +Aci})(ef] + Aer)dQ

up' +Auyt —uy, —Auy,
+/ (0F; + Aaj;)(ef; + Aei;)dQ — / / Td(ul — ul)dof
0Q. Ju

m_uTCL

uy" +Au —ug —Aug
/ / Trdl —u$)ddQ — [ (t + Aty)(uS + Aug)dT (6.38)
Q. Jum

U Tim

Here B = —S”kla” o is the complementary energy density and AB = —S”klAa” Aoy + SijriAcijor . The
strain fields €;; and €, are in the matrix and inclusion phases respectively of each Voronoi element. t is the
prescribed traction on the boundary I'y,,. The prefix A corresponds to increments and subscripts n and ¢
correspond to the normal and tangential directions at the matrix-inclusion interface. The two terms on the
matrix-inclusion interface 9Q2™ /0Q° provide the work done by the interfacial tractions T™ = T/*n™ + T/"t™

due to interfacial separation (u™ — u®). T and T{™ are the normal and tangential components that are
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described by cohesive laws in [35, 53]. Using divergence theorem, the potential energy can be written as:

1
II, = —/Q 55{;‘MA0{?A02} dQ —/Q Sior Aoy dQ (6.39)

m

1 C [« C [« C [«
Q. Q.

+ / (07 + Ao s (uf + Aug)dds — / (o7 + AT )ns (ul + Aul")ddR)
Q. aqQm
up +Auy —u, —Au,
+ / (0, + Act, n (S + Aug)doQ — / / Tmd(u™ — ug)do
121975 0. Jum —ug

uy+Aut —u; —Aug
- /{m T d(uy* — ug)doQ

m__, e
Uy —Uy

—/ (t; + At;) (uf + Aug)dl (6.40)
Cim

Here n® and n¢ are the outward normal on 92, and 90X, respectively. The integration over the incremental
displacements at the interface 9€2. is conducted by the backward Euler method. The total potential energy

functional for each level-2 or tr element containing N,. Voronoi cell elements as shown in figure 6.3 is

Nye
I?/ir =311, (6.41)
e=1

Substituting stress interpolations (6.35) and displacement interpolations (6.36,6.37) in equation (6.40) and
setting variations with respect to the stress coefficients Ag™, AS3¢ respectively to zero results in the weak

form of the element kinematic relation.

Jo,, PTT[S™][P™]dQ [0] ™+ AB™ _
_ o] Jo PUTSIPLAR | | B+ AB°
r qe + Aqe

Jo, [P [0°][LE]dOQ  — [5 [P™]"[n°][L]dOQ (0]

(0] (0] Joo, [P [n°][L]dO02
L q°+ Aq°
or in a condensed form
[H|{B + AB} =[G {a + Aq} (6.42)
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The weak forms of the global traction continuity conditions are subsequently solved by setting the variation

of the total energy function in equation (6.41) with respect to Aq, Aq™ and Aq® to zero. This results in

the weak form of the traction reciprocity conditions as:

Joo LT 0] [P0 0]
ch ﬂ m + Aﬂ m
Do |~ Joge [T 0] [P d00 0] =
e=1 ﬂ c + Aﬂ c
o] Joge 17 0] [P0

Jr, [Le]T{t + At}dQ

2

— Jyae [T (1Y (1 + D, s + Btg) + {6 YT + Bty g + Duy)) OO

@
Il
-

- faﬂg (LT ({n}T (un + Dun, ue + Aug) + {6 3T (un + A, ug + Duy)) dOQ

or in a condensed form

SUGTT(B + ABY = 3 {R?)

Substituting (6.42) in (6.44) yields:

S G H G q + Ag) = S (R}

e=1 e=1

In an iterative solution of equation (6.45), its linearized form for the i—th iteration is given as:

S G HGe)) {Aq}’—Z{RE}Z fGE]T[HGJ—I[Ge]{qu}"

e=1

or in a condensed form

[K]'{Aq}’ = {AF*}

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

In order to incorporate this relation in the linearized form of the principle of virtual work of equation (6.11),

it should be noted that the displacement vector w4, on the boundary of level-2 and transition element is
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a subset of all the VCFEM displacement fields, i.e. u?¢ = u® Uu™ U u°. Consequently, the displacement
field u° can be separated into two categories, viz. (i) u’?/t" on nodal points at the boundary of the level-2
or transition elements shown is figure 6.3, and (ii) u® on all the internal nodes. The stiffness matrix and
the load vector of the ensemble of all Voronoi cell elements belonging to a level-2 or transition element can

therefore be partitioned as

K12/tr12/tr  |12/tr,int Aq12/tr AF12/tr
= (6.48)
Kint,12/’cr Kint,int Aqint AFint
Static condensation of the internal degrees of freedom yields
[[KIQ/tr,IQ/tr] _ [K12/tr,int] [Kint,im]*l [Kint,12/tr]]i {Aql2/tr}i
_ {AFu/m}z _ [K12/tr,int] [Kint,int]_l {AFint}i (6.49)

These stiffness matrices and load vectors are then used in global assembly process of equation (6.11).
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Figure 6.6: Contour plot of 11 showing interfacial debonding at the end of the simulation, for: (a) pure
micromechanical analysis, (b) analysis by multi-scale model with a smaller level-2 region (% = 0.35), and

(¢) analysis by multi-scale model with a larger level-2 region (% = 0.45).

157



TSR

26 30 35
Y,
OSHL 2

28 31 37

[oglest:

9;‘%3

Lided
19 26 32
| |
[~ 7l

(a)

© Transition

L tr/12

@ Level-2

(b)
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Figure 6.8: (a) A periodic microstructure containing the tessellated RVE (fibers in black), (b) placement of

the RVE in the level-1 element showing periodic nodes on the boundary.

158

SERVE boundary

Level-1 element boundary

(b)



— Micromechanics i

- —. Multiscale (Lm12 /L=0.45) "
0.015= .. Multiscale (L, /L=0.35) ST
- 1 -
!
!
/c-ﬁ\ 0.01+ |1 _|
A !
o AN
g I
< i [
9 _ _|
© | :
0 e —
i : Lin=035L "
I I |
i i Luwn=0.45L | i
I |
-0005 1 | 1 | 1 | 1 | 1 | 1 | 1 | —
15 30 45 60 75 90 105

Figure 6.9: Comparison of microscopic stress o1 by different methods, plotted along a line through the
middle of microstructure

159



0.005 T T
o — Micromechanics (averaged) 2=
-—- Multi-level Model (casel) o
0.004 - --— Macroscopic Level-1 F e
-—-- Multi-level Model (case2)
‘< 0.003 -
[a W)
QO | i
N
el
W 0.002 - -
0.001 _
0 | | |
0 0.0002 0.0004 0.0006 0.0008
exx
(a)
0.005
L S S T |
= TER_=E
7z
0.004 — —— Micromechanics (averaged) | ™|
-—-- Multi-level Model (casel)
B -—-  Macroscopic Level-1 ]
- —- Multi-level Model (case2)
‘S 0.0031 .
oW
Qo | i
N’
el
) 0.002 - —
0.001 — —
0 | | |
0 0.0003 0.0006 0.0009 0.0012
exx
(b)

Figure 6.10: Comparison of macroscopic (volume averaged) ¥11 — ey curves by different methods of analysis
at (a) macroscopic element 1, and (b) macroscopic element 9.

160



E
[ @eeeeeecee
w ®@®00 OO0 O
y ©ceoccocccoe
iDooooootooo\ b i
0.2h , ADHESIVE A €
®eecccce’ g B
XX XN XXX
O O O O O O X
4 |

(a) (b)

Figure 6.11: (a) Schematic diagram of a composite double lap joint showing dimensions and boundary
conditions, (b) the level-0 computational mesh.

161



(b)

_ 2.100E-05

. 1.680E-05

. 1.260E-05

| 8.400E-06

. 4.200E-06

0.000E+00

_ 6.559E-01

L 5.247E-01

| 3.936E-01

| 2.624E-01

. 1.312E-01

0.000E+00

Figure 6.12: Contour plot of (a) degrading dissipation energy Wy, and (b) its gradient \/ ( %I;Vf)? + (

at the final loading stage.

162




INCREMENT 13/ 15
TOTAL ELEMENT 470

O LEVEL 0= 461

O LeveEL1= 7

B TRANSITION ELEMENTS = 5
B LEVEL2= 4

INCREMENT 15/ 15

TOTAL ELEMENT 470

LEVEL 0 = 446

LEVEL1= 0

TRANSITION ELEMENTS = 10

HEOO

LEVEL2= 14

(b)

Figure 6.13: Evolution of the multi-level computational model with level transition (a) at 87 % loading, and
(b) at the final loading stage.
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